留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

皮秒激光切割AFRP复合材料实验研究

杨剑 张瑞 赵煜 杜婷婷 叶云霞

杨剑, 张瑞, 赵煜, 等. 皮秒激光切割AFRP复合材料实验研究[J]. 复合材料学报, 2022, 39(1): 147-157. doi: 10.13801/j.cnki.fhclxb.20210426.002
引用本文: 杨剑, 张瑞, 赵煜, 等. 皮秒激光切割AFRP复合材料实验研究[J]. 复合材料学报, 2022, 39(1): 147-157. doi: 10.13801/j.cnki.fhclxb.20210426.002
YANG Jian, ZHANG Rui, ZHAO Yu, et al. Experimental study on picosecond laser cutting AFRP composites[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 147-157. doi: 10.13801/j.cnki.fhclxb.20210426.002
Citation: YANG Jian, ZHANG Rui, ZHAO Yu, et al. Experimental study on picosecond laser cutting AFRP composites[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 147-157. doi: 10.13801/j.cnki.fhclxb.20210426.002

皮秒激光切割AFRP复合材料实验研究

doi: 10.13801/j.cnki.fhclxb.20210426.002
基金项目: 装备预先研究项目(61409230314);镇江市重点研发计划(GY2019005);江苏省重点研发产业前瞻项目(BE2020037)
详细信息
    通讯作者:

    叶云霞,博士,教授,硕士生导师,研究方向为激光精密加工 E-mail: yeyunxia@ujs.edu.cn

  • 中图分类号: TN249

Experimental study on picosecond laser cutting AFRP composites

  • 摘要: 采用紫外皮秒激光( λ=355 nm)、绿光皮秒激光( λ=532 nm)和红外皮秒激光( λ=1064 nm)的三波长皮秒脉冲固体激光器,对1 mm厚芳纶纤维增强树脂基复合材料(Aramid fiber reinforced polymer,AFRP)进行单次扫描切割实验,用光学显微镜(OM)和SEM测量了上切缝宽度、切缝深度和上表面热影响区宽度,并计算了切缝锥度,分析了激光波长、功率及扫描速度等参数对切口形貌和切缝质量的影响。结果表明:相比于红外激光和绿光激光切割AFRP,紫外激光的切割效率更高,切割质量更好;上切缝宽度、切缝深度和上表面热影响区宽度随着激光功率的增大而增大,随着激光扫描速度的增大而减小;切缝锥度随着激光功率的增大而减小,随着激光扫描速度的增大而增大;适当降低激光扫描速度,有利于提高切缝深宽比。

     

  • 图  1  脉冲激光切割系统原理示意图与实物图

    Figure  1.  Schematic diagram and physical drawing of punching laser cutting system

    AFRP—Aramid fiber reinforced polymer

    图  2  上切缝宽度( K)和上表面热影响区宽度( W)测量

    Figure  2.  Measurement of the upper kerf width ( K) and upper surface heat- affected zone width ( W)

    图  3  切缝深度( H)测量

    Figure  3.  Measurement of kerf depth ( H)

    图  4  三个波长下芳纶纤维增强树脂基复合材料(AFRP)切缝微观形貌图片

    Figure  4.  Micrographs of aramid fiber reinforced polymer (AFRP) slit at three wavelengths

    图  5  1 mm厚环氧树脂板 [ 13] 和0.5 mm厚AF织物 [ 14] 的FTIR图谱

    Figure  5.  FTIR spectra of 1 mm thick epoxy resin board [ 13] and 0.5 mm thick AF fabric [ 14]

    图  6  AF和环氧树脂的分子结构

    Figure  6.  Molecular structure of AF and epoxy resin

    图  7  AF排布方向对切缝宽度的影响

    Figure  7.  Effect of AF arrangement direction on slit width

    图  8  AFRP对紫外激光、绿光和红外激光的吸收机制

    Figure  8.  Absorption mechanism of ultraviolet laser, green laser and infrared laser by AFRP

    图  9  功率为25 W时三种波长下AFRP切缝截面

    Figure  9.  Cross section of AFRP kerf under three wavelengths at 25 W power

    图  10  功率25 W时三种波长下AFRP切缝参数随切割速度变化

    Figure  10.  Variation of AFRP kerf parameters with cutting speed under three wavelengths at 25 W power

    图  11  波长为532 nm时不同扫描速度下AFRP的热影响区

    Figure  11.  Heat affected zone at 532 nm with different scanning speed of AFRP

    图  12  波长为355 nm时不同功率下的AFRP切缝截面

    Figure  12.  Cross section of AFRP kerf obtained with 355 nm

    图  13  AFRP切缝特征参数随功率变化

    Figure  13.  Variation of kerf parameters with power of AFRP

    图  14  波长为355 nm时不同功率下AFRP的热影响区

    Figure  14.  Heat-affected zone with different power at 355 nm of AFRP

    表  1  材料热学性能参数

    Table  1.   Thermal properties of materials

    Property Kevlar-29 Epoxy resin
    Decomposition temperature/K 800 440
    Heat conductivity/(W·m −1·K −1) 0.04 0.1
    Specific heat capacity/(J·kg −1·K −1) 1400 1 884
    Density/(kg·m −3) 1440 1100
    下载: 导出CSV

    表  2  激光器参数

    Table  2.   Laser parameters

    Options Average power/W Repetition rate/kHz Pulse duration/ps Focus diameter/μm
    UV laser 0-25 500 15 50-60
    GN laser 0-45 500 15 35-40
    IR laser 0-90 500 15 25-30
    下载: 导出CSV
  • [1] 石文天, 刘玉德, 张永安, 等. 芳纶纤维复合材料切削加工研究进展[J]. 表面技术, 2016, 45(1):28-35.

    SHI Wentian, LIU Yude, ZHANG Yongan, et al. Research progress in cutting of aramid fiber composites[J]. Surface Technology,2016,45(1):28-35(in Chinese).
    [2] AL-SULAIMAN F, YILBAS B S, AHSAN M, et al. CO 2 laser cutting of kevlar laminate: Influence of assisting gas pressure[J]. The International Journal of Advanced Manufacturing Technology,2009,45(1-2):62-70. doi: 10.1007/s00170-009-1945-7
    [3] 王含妮, 谭勇, 张喜和, 等. 芳纶纤维复合材料在脉冲激光作用下的热损伤研究[J]. 光电技术应用, 2015, 30(1):6. doi: 10.3969/j.issn.1673-1255.2015.01.008

    WANG Hanni, TAN Yong, ZHANG Xihe, et al. Thermal damage of aramid fiber composites under pulsed laser irradiation[J]. Application of Optoelectronic Technology,2015,30(1):6(in Chinese). doi: 10.3969/j.issn.1673-1255.2015.01.008
    [4] 王贵兵, 罗飞, 刘仓理, 等. 芳纶纤维复合材料激光烧蚀损伤形貌研究[J]. 激光技术, 2006(2):168-180. doi: 10.3969/j.issn.1001-3806.2006.02.002

    WANG Guibing, LUO Fei, LIU Cangli, et al. Laser ablation damage morphology of aramid fiber composites[J]. Laser Technology,2006(2):168-180(in Chinese). doi: 10.3969/j.issn.1001-3806.2006.02.002
    [5] YILBAS B S, AL-SULAIMAN F, KARAKAS C, et al. Laser cutting of multilayered kevlar plates[J]. Journal of Materials Engineering & Performance,2007,16(6):663-671.
    [6] GAUTAM G D, MISHRA D R. Dimensional accuracy improvement by parametric optimization in pulsed Nd: YAG laser cutting of kevlar-29/basalt fiber-reinforced hybrid composites[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2019,41(7):85-99.
    [7] MISHRA D R, BAJAJ A, BISHT R, et al. Optimization of multiple kerf quality characteristics for cutting operation on carbon-basalt-Kevlar29 hybrid composite material using pulsed Nd: YAG laser using GRA[J]. CIRP Journal of Manufacturing Science and Technology,2020,30(4):24-35.
    [8] HERRMANN T, KLIMT B, SIEGEL F, et al. Micromachining with picosecond laser pulses[J]. Industrial Laser Solutions,2004,19(10):34-43.
    [9] 张学聪, 钱静, 付强, 等. 皮秒激光切割PBO纤维增强复合材料[J]. 中国激光, 2020, 13:1-15.

    ZHANG Xuecong, QIAN Jing, FU Qiang, et al. Cutting PBO fiber reinforced composites by picosecond laser[J]. Chinese Journal of Lasers,2020,13:1-15(in Chinese).
    [10] LI Z L, ZHENG H Y, LIM G C, et al. Study on UV laser machining quality of carbon fibre reinforced composites[J]. Composites Part A: Applied Science & Manufacturing,2010,41(10):1403-1408.
    [11] DELL M, ERBA, GALANTUCCI L M, et al. An experimental study on laser drilling and cutting of composite materials for the aerospace industry using excimer and CO 2 sources[J]. Composites Manufacturing,1992,3(1):14-19. doi: 10.1016/0956-7143(92)90178-W
    [12] HERZOG D, JAESCHKE P, MEIER O, et al. Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP[J]. International Journal of Machine Tools & Manufacture,2008,48(12-13):1464-1473.
    [13] TAKAHASHI K, TSUKAMOTO M, MASUNO S, et al. Heat conduction analysis of laser CFRP processing with IR and UV laser light[J]. Composites Part A: Applied Science & Manufacturing,2016,84(9):135-148.
    [14] CUI X, KE Q F, CAI G M, et al. Evaluation of light protective properties of high performance aramid fabrics[J]. Applied Mechanics & Materials,2014,551:28-31.
    [15] 贾宝申, 唐洪平, 苏春洲, 等. 脉冲激光去除树脂基复合材料表面涂层[J]. 中国激光, 2019, 46(12):1202010.

    JIA Baoshen, TANG Hongping, SU Chunzhou, et al. Surface coating removal of resin matrix composites by pulsed laser[J]. Chinese Journal of Lasers,2019,46(12):1202010(in Chinese).
    [16] AL-SULAIMAN F, YILBAS B S, KARATAS C, et al. Laser cutting of kevlar and mild steel composite structure: end product quality assessment[J]. Journal of Materials En-gineering and Performance,2007,16(1):22-29. doi: 10.1007/s11665-006-9003-1
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  791
  • HTML全文浏览量:  302
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-03-22
  • 录用日期:  2021-04-18
  • 网络出版日期:  2021-04-26
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回