留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶液法合成的功能无机材料氧化镍对钙钛矿太阳能电池光电性能的影响

李龙飞 叶雅奇 江文 苏兆俊 赵杰 孔祥强

李龙飞, 叶雅奇, 江文, 等. 溶液法合成的功能无机材料氧化镍对钙钛矿太阳能电池光电性能的影响[J]. 复合材料学报, 2022, 39(5): 1967-1975. doi: 10.13801/j.cnki.fhclxb.20210426.001
引用本文: 李龙飞, 叶雅奇, 江文, 等. 溶液法合成的功能无机材料氧化镍对钙钛矿太阳能电池光电性能的影响[J]. 复合材料学报, 2022, 39(5): 1967-1975. doi: 10.13801/j.cnki.fhclxb.20210426.001
LI Longfei, YE Yaqi, JIANG Wen, et al. Effect of the functional inorganic material nickel oxide synthesized by solution method on the photoelectric performance of perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1967-1975. doi: 10.13801/j.cnki.fhclxb.20210426.001
Citation: LI Longfei, YE Yaqi, JIANG Wen, et al. Effect of the functional inorganic material nickel oxide synthesized by solution method on the photoelectric performance of perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1967-1975. doi: 10.13801/j.cnki.fhclxb.20210426.001

溶液法合成的功能无机材料氧化镍对钙钛矿太阳能电池光电性能的影响

doi: 10.13801/j.cnki.fhclxb.20210426.001
基金项目: 国家自然科学基金(21971172; 51776115; 21671141); 江苏省自然科学基金(BK20191425); 山东省研究生导师指导能力提升计划(SDYY17037); 山东科技大学研究生导师指导能力提升计划(KDYC17009); 江苏省光电工程高等学校重点学科建设项目; 江苏省光伏科学与工程协同创新中心(SKLPST201902)
详细信息
    作者简介:

    赵杰,江苏泗洪人,博士、苏州大学副教授、硕士生导师,香江学者。主要研究方向为复合薄膜材料、钙钛矿太阳能电池等。主持国家自然科学基金青年项目、江苏省自然科学基金面上和青年基金项目等。在Angew., Nano. Lett., Adv. Mater., Small, Green Chem., Chem. Commun., J. Mater. Chem. A等杂志发表第一/通信作者论文30余篇。研究成果获江苏省科学技术奖一等奖、苏州市自然科学优秀学术论文奖等

    孔祥强,男,山东曲阜人,博士、教授、博士生导师。主要研究方向为太阳能热泵技术、新能源材料转化与利用技术、制冷空调新技术、建筑与工业节能技术等。主持国家自然科学基金面上项目、山东省科技发展计划项目等。科技成果获青岛市科技进步一等奖、中国黄金协会科学技术一等奖等

    通讯作者:

    赵杰,博士,副教授,硕士生导师,研究方向为纳米氧化物复合材料、光电材料与器件 E-mail: jzhao@suda.edu.cn

    孔祥强,博士,教授,博士生导师,研究方向为太阳能热泵、新能源材料转化与利用 E-mail:xqkong@sdust.edu.cn

  • 中图分类号: TM914.4; TQ138.13

Effect of the functional inorganic material nickel oxide synthesized by solution method on the photoelectric performance of perovskite solar cells

  • 摘要: 功能无机材料氧化镍(NiOx)作为钙钛矿太阳能电池中最有前途的空穴传输材料之一,其有着高空穴迁移率、良好的稳定性、易于加工以及适合的费米能级等优点。但是,由于NiOx自身固有电导率低,Ni空位的电离能相当大,未掺杂的NiOx中空穴密度受到很大限制,加上孔洞的积累增加了载流子复合的可能,从而降低了有效的电荷收集。因此,优化NiOx薄膜的成膜质量是解决上述问题的关键。本文通过溶液法使用乙二醇甲醚(MEA)、乙醇(EA)和去离子水作为溶液,分别制备了DME-NiOx、EA-NiOx和NCs-NiOx薄膜,并在浓度调节范围内对基于NiOx的钙钛矿器件进行优化,最终得到了光电转化效率(PCE)为18.50%,开路电压(Voc)为1.034 V,短路电流(Jsc)为22.94 mA/cm2,填充因子(FF)为78%的最佳器件。

     

  • 图  1  钙钛矿太阳能电池: (a)器件结构;(b)能级结构

    BCP—2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline; PCBM—[6,6]-Phenyl-C61-butyricacidmethyl ester; ITO—ITO conductive glass

    Figure  1.  Perovskite solar cell: (a) Device structure; (b) Energy level structure

    图  2  不同NiOx薄膜SEM形貌图: (a) DME-NiOx; (b) EA-NiOx; (c) NCs-NiOx ; EDS分析:((d)~(i)) DME-NiOx

    Figure  2.  SEM topography of different NiOx films: (a) DME-NiOx; (b) EA-NiOx; (c) NCs-NiOx; EDS analysis: ((d)-(i)) DME-NiOx

    图  3  不同NiOx上钙钛矿薄膜的SEM形貌图及其XRD图谱: DME-NiOx (a)、EA-NiOx (b)和NCs-NiOx (c)上钙钛矿的SEM图像;DME-NiOx (d)、EA-NiOx (e)和NCs-NiOx (f)上钙钛矿的XRD图谱

    Figure  3.  SEM morphology and XRD patterns of perovskite films on different NiOx: SEM images of perovskite on DME-NiOx (a), EA-NiOx (b) and NCs-NiOx (c); XRD patterns of perovskite on DME-NiOx (d), EA-NiOx (e) and NCs-NiOx (f)

    图  4  不同浓度DME-NiOx下钙钛矿薄膜的XRD图谱

    Figure  4.  XRD patterns of perovskite films at different concentrations of DME-NiOx

    图  5  不同浓度DME-NiOx下钙钛矿薄膜的光学表征: (a)吸收强度;(b)吸收边;(c)荧光猝灭;(d)荧光寿命;(e)透过率;(f)方块电阻

    Figure  5.  Optical characterizations of perovskite films at different concentrations of DME-NiOx: (a) Absorption intensity; (b) Absorption edge; (c) Fluorescence quenching; (d) Fluorescence lifetime; (e) Transmittance; (f) Sheet resistance

    图  6  不同浓度NiOxJ-V曲线

    Figure  6.  J-V curve of different concentration of NiOx

    图  7  DME-NiOx的IPCE曲线

    Figure  7.  IPCE curve of DME-NiOx

    EQE—External quantum efficiency

    表  1  不同类型NiOx的制备方法及制备条件

    Table  1.   Preparation methods and preparation conditions of different types of NiOx

    SampleRaw materialsSolventConcentration/(mol·L−1)Preparation conditions
    DME-NiOx Nickel(II) acetate tetrahydrate Methoxyethanol 0.1 5000 r/min 50 s, 350℃ 90 min
    EA-NiOx Nickel(II) acetate tetrahydrate Ethanol 20 5000 r/min 50 s, 350℃ 90 min
    NCs-NiOx Nickel(II) nitrate hexahydrate Deionized water 20 3000 r/min 40 s, 100℃ 60 min
    Note: DME-NiOx, EA-NiOx, NCs-NiOx—Prepared by solution method using ethylene glycol methyl ether (MEA), ethanol (EA) and deionized water as solutions.
    下载: 导出CSV

    表  2  不同NiOx浓度下的VocJsc、FF及PCE

    Table  2.   Voc, Jsc, FF and PCE under different NiOx concentrations

    SampleVoc /VJsc/
    (mA·cm−2)
    FF/%PCE/%
    NCs-NiOx 1.015 17.93 76.17 13.96
    EA-NiOx 1.036 19.23 76.95 15.34
    DME-NiOx 0.05 mol/L 1.027 20.45 79.00 16.60
    DME-NiOx 0.075 mol/L 1.043 21.36 79.29 17.68
    DME-NiOx 0.1 mol/L 1.034 22.94 78.01 18.50
    DME-NiOx 0.125 mol/L 1.024 19.99 78.64 16.10
    Notes: Voc—Open-circuit voltage; Jsc—Short-circuit current density; FF—Fill factor; PCE—Power conversation efficiency.
    下载: 导出CSV
  • [1] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell effi-ciency tables (version 40)[J]. Progress in Photovoltaics: Research and Applications,2020,20(5):606-614.
    [2] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organome-tal halide perovskites[J]. Science,2012,338(6107):643-647. doi: 10.1126/science.1228604
    [3] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal ha-lide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society,2019,131(17):6050-6051.
    [4] HEO J H, IM S H, NOH J H, et al. Efficient inorganic-orga-nic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nature Photonics,2013,7(6):486-491. doi: 10.1038/nphoton.2013.80
    [5] DOCAMPO P, BALL J M, DARWICH M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates[J]. Nature Communications,2013,4:2761. doi: 10.1038/ncomms3761
    [6] SEOL D, KIM Y, JEONG A, et al. Origin of hysteresis in CH3NH3PbI3 perovskite thin films[J]. Advance Functional Materials,2017,27(37):1701924. doi: 10.1002/adfm.201701924
    [7] YANG Y, ZHANG C C, WANG Z K, et al. Polarized ferroelectric polymers for high-performance perovskite solar cells[J]. Advance Materials,2019,31(30):1902222.
    [8] HUANG Z F, CONG S, ZOU G F, et al. Fabrication of nickel oxide nanopillar arrays on flexible electrodes for highly effi-cient perovskite solar cells[J]. Nano Letters,2019,19(6):3676. doi: 10.1021/acs.nanolett.9b00760
    [9] 陈超, 杨修春, 刘巍. 有机-无机杂化钙钛矿太阳能电池的研究进展[J]. 化工学报, 2017, 60:811-820.

    CHEN C, YANG X C, LIU W. Research progress of hybrid organic-inorganic perovskite solar cells[J]. CIESC Journal,2017,60:811-820(in Chinese).
    [10] ZHOU W, WEN Z, GAO P. Less is more: Dopant-free hole transporting materials for high-efficiency perovskite solar cells[J]. Advanced Energy Materials,2018,8(9):1702512. doi: 10.1002/aenm.201702512
    [11] GUAN L, ZHENG Z, GUO Y. Enhanced hole transport in benzoic acid doped Spiro-OMeTAD composite layer with intergrowing benzoate phase for perovskite solar cells[J]. Journal of Alloys and Compounds,2020,832:154991. doi: 10.1016/j.jallcom.2020.154991
    [12] XU L, CHEN X, JIN J, et al. Inverted perovskite solar cells employing doped NiO hole transport layers: A review[J]. Nano Energy,2019,63:103860. doi: 10.1016/j.nanoen.2019.103860
    [13] PING L, HE Q Q, DAN O Y, et al. Transition metal oxides as hole-transporting materials in organic semiconductor and hybrid perovskite based solar cells[J]. Science China-Chemistry,2017,60(4):489.
    [14] KANEKO R, CHOWDHURY T H, WU G, et al. Cobalt-doped nickel oxide nanoparticles as efficient hole transport materials for low-temperature processed perovskite solar cells[J]. Solar Energy,2019,181:243-250. doi: 10.1016/j.solener.2019.01.097
    [15] KIM G W, KANG G, KIM J, et al. Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells[J]. Energy & Environmental Science,2016,9(7):2326-2333.
    [16] YIN X T, GUO Y X, XIE H X, et al. Nickel oxide as efficient hole transport materials for perovskite solar cells[J]. Solar RRL,2019,3(5):1900001. doi: 10.1002/solr.201900001
    [17] ZHU Z L, BAI Y, ZHANG T, et al. High-performance hole-extraction layer of sol–gel-processed NiO nanocrystals for inverted planar perovskite solar cells[J]. Angewandte Chemie International Edition,2014,53(46):1-6.
    [18] JONG H P, SEO J W, PARK S M, et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition[J]. Advanced Materials,2015,27(27):4013-4019. doi: 10.1002/adma.201500523
    [19] WANG K C, SHEN P S, LI M H, et al. Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells[J]. ACS Applied Materials Interfaces,2014,6(15):11851-11858. doi: 10.1021/am503610u
    [20] HE Z B, CHEN W, WU Y H, et al. Understanding the doping effect on NiO: Toward high performance inverted perovskite solar cells[J]. Advanced Energy Materials,2018,8(19):1703519. doi: 10.1002/aenm.201703519
    [21] CHEN W, XU L M, FENG X Y, et al. Metal acetylacetonate series in interface engineering for full low-temperature-processed, high-performance, and stable planar perovskite solar cells with conversion efficiency over 16% on 1 cm2 scale[J]. Advanced Materials,2017,29(16):1603923. doi: 10.1002/adma.201603923
    [22] RU P B, BI E B, ZHANG Y, et al. High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells[J]. Advanced Energy Materials,2020,10(12):1903487. doi: 10.1002/aenm.201903487
    [23] ZHANG H, CHENG J Q, LIN F, et al. Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility[J]. ACS Nano,2016,10(1):1503-1511. doi: 10.1021/acsnano.5b07043
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2007
  • HTML全文浏览量:  702
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 修回日期:  2021-04-16
  • 录用日期:  2021-04-21
  • 网络出版日期:  2021-04-26
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回