留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锈蚀对钢板表面特性及CFRP板-锈蚀钢板界面黏结性能的影响

李安邦 徐善华

李安邦, 徐善华. 锈蚀对钢板表面特性及CFRP板-锈蚀钢板界面黏结性能的影响[J]. 复合材料学报, 2022, 39(2): 746-758. doi: 10.13801/j.cnki.fhclxb.20210422.001
引用本文: 李安邦, 徐善华. 锈蚀对钢板表面特性及CFRP板-锈蚀钢板界面黏结性能的影响[J]. 复合材料学报, 2022, 39(2): 746-758. doi: 10.13801/j.cnki.fhclxb.20210422.001
LI Anbang, XU Shanhua. Effect of corrosion on the surface properties of steel plate and interfacial bonding properties between CFRP plate and corroded steel plate[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 746-758. doi: 10.13801/j.cnki.fhclxb.20210422.001
Citation: LI Anbang, XU Shanhua. Effect of corrosion on the surface properties of steel plate and interfacial bonding properties between CFRP plate and corroded steel plate[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 746-758. doi: 10.13801/j.cnki.fhclxb.20210422.001

锈蚀对钢板表面特性及CFRP板-锈蚀钢板界面黏结性能的影响

doi: 10.13801/j.cnki.fhclxb.20210422.001
基金项目: 国家自然科学基金(52008331);西部绿色建筑国家重点实验室自主研究课题基金(LSZZ202114)
详细信息
    通讯作者:

    李安邦,博士,研究方向为工程结构耐久性与服役性能提升  E-mail: lianbangjdtm@163.com

  • 中图分类号: TU398+.9

Effect of corrosion on the surface properties of steel plate and interfacial bonding properties between CFRP plate and corroded steel plate

  • 摘要: 为研究锈蚀对钢板表面特性及碳纤维增强树脂复合材料(CFRP)板-锈蚀钢板界面黏结性能的影响,开展了6批次锈蚀钢板表面特性测试及22个CFRP板-锈蚀钢板双搭接试件的拉伸试验,揭示了锈蚀对钢板表面形貌与粗糙度、表观接触角与表面自由能以及CFRP板-钢板黏结界面破坏模式、有效黏结长度、极限荷载的影响。研究结果表明:随着腐蚀龄期不断增大,均匀腐蚀与点蚀交替主导钢板表面形貌特征变化,钢板表面粗糙度与表面自由能均出现周期性上下波动;CFRP板-锈蚀钢板黏结界面主要呈钢板/胶层界面剥离与CFRP板/胶层界面剥离混合破坏模式,腐蚀龄期仅对混合破坏类型的面积占比有一定影响;胶层厚度相同时,锈蚀钢板对应界面有效黏结长度明显大于未锈蚀钢板对应界面,腐蚀龄期0~12个月、胶层厚度0.21~0.7 mm的CFRP板-锈蚀钢板界面有效黏结长度为63.75~91.5 mm;随着腐蚀龄期不断增大,CFRP板-锈蚀钢板界面极限荷载呈先增大后稳定趋势,锈蚀引起的钢板表面面积、表面自由能及表面粗糙度增加,对CFRP板-钢板黏结界面极限承载力有利。

     

  • 图  1  钢板人工加速腐蚀试验

    Figure  1.  Artificial accelerated corrosion test of steel plate

    图  2  锈蚀钢板表面形貌扫描

    Figure  2.  Scanning of surface morphology of corroded steel plate

    图  3  锈蚀钢板表观接触角测试

    Figure  3.  Static contact angle measurement of corroded steel plate

    图  4  CFRP板-锈蚀钢板双搭接接头试件示意图

    Figure  4.  Schematic diagram of double lap joint specimen of CFRP-corroded steel plate

    L1, L2—Adhesive length of CFRP plates at test end and anchorage end; tc—Thickness of rusted steel plate

    图  5  双搭接剪切拉伸试验加载与量测

    Figure  5.  Double lap shear tensile test loading and measurement

    图  6  不同腐蚀龄期锈蚀钢板表面形貌:(a) C0外侧;(b) C0内侧;(c) C3外侧;(d) C3内侧;(e) C4外侧;(f) C4内侧;(g) C6外侧;(h) C6内侧;(i) C8外侧;(j) C8内侧;(k) C12外侧;(l) C12内侧

    Figure  6.  Surface topographies of steel plates with different corrosion durations: (a) C0 front side; (b) C0 back side; (c) C3 front side; (d) C3 back side; (e) C4 front side; (f) C4 back side; (g) C6 front side; (h) C6 back side; (i) C8 front side; (j) C8 back side; (k) C12 front side; (l) C12 back side

    图  7  钢板锈蚀表面形貌统计特征变化规律

    Figure  7.  Statistical characteristics of corrosion surface morphology of steel plate

    图  8  不同龄期对应的H型钢腐蚀状态

    Figure  8.  Corrosion characteristics of H-beam with different corrosion durations

    图  9  锈蚀钢板表面能随腐蚀龄期变化规律

    Figure  9.  Surface free energy versus corrosion duration for corroded steel plate

    图  10  不同腐蚀龄期钢板对应的CFRP板-锈蚀钢板黏结界面破坏模式

    Figure  10.  Failure modes for the CFRP-corroded steel plate specimens with different corrosion durations

    图  11  不同荷载水平下CFRP板应变分布特征:(a) CFRP-S(C0-B150)试件正面;(b) CFRP-S(C8-B150)试件背面

    Figure  11.  Strain distribution of CFRP plate under different load levels: (a) Front side of specimen CFRP-S(C0-B150); (b) Back side of specimen CFRP-S(C8-B150)

    图  12  不同荷载水平下CFRP-钢板界面剪应力分布:(a) CFRP-S(C0-B150)试件正面;(b) CFRP-S(C8-B150)试件背面

    Figure  12.  Interfacial shear stress distribution of CFRP-corroded steel plate under different load levels: (a) Front side of specimen CFRP-S(C0-B150); (b) Back side of specimen CFRP-S(C8-B150)

    Leff—Effective bonding length of interface

    图  13  CFRP板-锈蚀钢板极限荷载随CFRP板黏贴长度变化规律

    Figure  13.  Variation of ultimate load of CFRP-corroded steel plate with CFRP bond length

    图  14  CFRP板-锈蚀钢板有效黏结长度随胶层厚度变化规律

    Figure  14.  Variation of effective bond length of CFRP-corroded steel plate with adhesive thickness

    图  15  CFRP板-锈蚀钢板极限荷载随钢板腐蚀龄期变化规律

    Figure  15.  Variation of ultimate load of CFRP-corroded steel plate with corrosion duration

    图  16  CFRP板-锈蚀钢板极限荷载随界面扩展面积比Sdr (a)、表面自由能γs (b) 及表面算数平均高度Sa (c) 变化规律

    Figure  16.  Variation of ultimate load of CFRP-corroded steel plate with developed interfacial area ratio Sdr (a), surface free energy γs (b) and surface arithmetic mean height Sa (c)

    表  1  试验用材料属性

    Table  1.   Material properties

    MaterialThickness/
    mm
    Elasticity modulus/
    GPa
    Yield strength/
    MPa
    Tensile strengt/
    MPa
    Elongation at
    break/%
    CFRP plate 1.4 165a N/A 2400a 1.61a
    Adhesive N/A 5.3 N/A 41.75 1.13
    Steel plate 10.75b 181.9 275.6 421.18 20.78
    Notes: aAccording to the manufacturer′s instructions; bThickness of steel plate which cut from the flange of the un-corroded H beams; N/A—Not applicable.
    下载: 导出CSV

    表  2  CFRP板-锈蚀钢板双搭接试件参数与主要试验结果汇总

    Table  2.   Summary of parameters and results of quasi-static loading tests of double-lap joint specimens of CFRP-corroded steel plate

    Specimen No.Cd/monthξ/%L1/mmtf/mmtb/mmtave/mmFu/kNLf/mmLb/mmFailure mode
    CFRP-S(C0-B30) 0 0.00 30 0.54 0.49 0.52 37.00 a+c (Back)
    CFRP-S(C0-B50) 50 0.46 0.47 0.47 39.80 a+d (Front)/
    a+b+c (Back)
    CFRP-S(C0-B80) 80 0.52 0.44 0.48 48.80 a+c+d (Back)
    CFRP-S(C0-B120) 120 0.63 0.42 0.52 49.90 67.75 67.75 a+c(Front)
    CFRP-S(C0-B150) 150 0.52 0.41 0.46 48.00 63.75 73.00 a+c (Back)
    CFRP-S(C3-B150) 3 5.08 150 0.37 0.44 0.41 52.00 91.50 91.50 a+c (Front)
    CFRP-S(C4-B30) 4 6.15 30 0.47 0.43 0.45 39.10 a+c (Front)/
    c+d (Back)
    CFRP-S(C4-B50) 50 0.51 0.45 0.48 43.30 a+c (Back)
    CFRP-S(C4-B80) 80 0.44 0.58 0.51 50.90 a+c (Back)
    CFRP-S(C4-B120) 120 0.51 0.31 0.41 53.00 a+c (Front)
    CFRP-S(C4-B150) 150 0.70 0.24 0.47 52.30 82.25 73.00 a (Front)
    CFRP-S(C6-B150) 6 7.92 150 0.40 0.24 0.32 54.30 82.25 73.00 a+c (Back)
    CFRP-S(C8-B30) 8 10.07 30 0.30 1.72 1.01 23.28 c+d (Front)/
    a (Back)
    CFRP-S(C8-B50) 50 0.30 0.42 0.36 40.76 a+c+d (Front)
    CFRP-S(C8-B80) 80 0.30 0.32 0.31 52.88 a+c+d (Back)
    CFRP-S(C8-B120) 120 0.40 0.57 0.49 53.64 82.25 91.50 a+c (Front)/
    c+d (Back)
    CFRP-S(C8-B150) 150 0.42 0.57 0.50 53.90 91.50 73.00 a+b+c+d (Front)/
    a+c (Back)
    CFRP-S(C12-B30) 12 15.02 30 0.54 0.43 0.49 40.00 a+c (Back)
    CFRP-S(C12-B50) 50 0.30 0.64 0.47 45.60 a+b (Back)
    CFRP-S(C12-B80) 80 0.70 0.53 0.62 52.70 a+c (Front)
    CFRP-S(C12-B120) 120 0.40 0.53 0.46 56.00 91.50 91.50 a+c+d (Back)
    CFRP-S(C12-B150) 150 0.70 0.39 0.54 55.00 82.25 91.50 a+c+d (Front)/
    a+c (Back)
    Notes: CFRP-S—CFRP-steel plate; C—Corrosion durations; B—Bond length; Cd—Corrosion duration; ξ—Mass loss rate; L1—Bond length of CFRP plate on the testing side of specimen; tf and tb—Measured thickness of the adhesive layer on the front and back side of corroded steel plate; tave—Average thickness of both side of adhesive layers. Fu—Ultimate load; Lf and Lb—Effective bond length of the front and back side of the double-lap joint; a—Steel/adhesive interfacial debonding; b—Cohesive failure; c—CFRP/adhesive interfacial debonding; d—CFRP delamination; Front and Back—Outer and inner edges of the flange plate, respectively.
    下载: 导出CSV

    表  3  加速腐蚀试验及锈蚀钢板表面特性测试结果

    Table  3.   Accelerated corrosion test results and morphologies of corroded steel plates

    Specimen No.Cd / monthξ/%LocationSa/μmSq/μmSz/μmSdr/%θ1,aveθ2,aveγs/(mJ·m−2)
    C0 0 0 Front 13.0 21.6 134.9 0.02 79.1 46.1 40.9
    Back 15.9 20.4 179.8 0.04 78.3 44.0 42.0
    C3 3 5.08 Front 70.3 110.3 1 293.9 5.32 67.6 40.9 47.9
    Back 78.1 116.2 1 309.5 5.25 69.3 37.1 48.4
    C4 4 6.15 Front 120.5 144.6 903.9 4.91 65.0 39.5 49.6
    Back 84.6 116.3 788.0 3.54 63.5 39.1 50.5
    C6 6 7.92 Front 95.8 130.9 808.3 4.10 65.7 39.0 49.4
    Back 101.6 143.1 941.2 5.07 61.0 38.5 52.0
    C8 8 10.07 Front 136.4 170.3 1 008.6 4.05 69.4 41.0 46.9
    Back 98.5 135.0 866.8 4.35 67.6 37.7 49.0
    C12 12 15.02 Front 117.8 146.5 913.1 5.60 67.0 37.8 49.2
    Back 113.9 146.4 1 073.5 6.32 63.7 37.9 50.8
    Notes: Sa, Sq, Sz and Sdr—Arithmetic mean height, root mean square height, maximum height, and developed interfacial area ratio of the scale-limited surface, respectively; θ1,ave and θ2,ave—Average static contact angles corresponding to the first and second measuring liquid, respectively; γs—Calculated surface free energy for corroded steel plates.
    下载: 导出CSV
  • [1] LEPRETRE E, CHATAIGNER S, DIENG L, et al. Fatigue strengthening of cracked steel plates with CFRP laminates in the case of old steel material[J]. Construction and Building Materials,2018,174:421-432. doi: 10.1016/j.conbuildmat.2018.04.063
    [2] YU Qianqian, WU Yufei. Fatigue retrofitting of cracked steel beams with CFRP laminates[J]. Composite Structures,2018,192:232-244. doi: 10.1016/j.compstruct.2018.02.090
    [3] EL-TAWIL S, EKIZ E, GOEL S, et al. Retraining local and global buckling behavior of steel plastic hinges using CFRP[J]. Journal of Constructional Steel Research,2011,67(3):261-269. doi: 10.1016/j.jcsr.2010.11.007
    [4] 李安邦. CFRP板加固锈蚀钢板疲劳性能及其设计方法研究[D]. 西安: 西安建筑科技大学, 2020.

    LI Anbang. Fatigue behavior and design method of corroded steel plate strengthened with CFRP plates[D]. Xi’an: Xi’an University of Architecture & Technology, 2020(in Chinese).
    [5] 杨勇新, 岳清瑞, 彭福明. 碳纤维布加固钢结构的黏结性能研究[J]. 土木工程学报, 2006, 39(10):1-5. doi: 10.3321/j.issn:1000-131X.2006.10.001

    YANG Yongxin, YUE Qingrui, PENG Fuming. Study on the bond behavior of CFRP sheets to steel[J]. China Civil Engineering Journal,2006,39(10):1-5(in Chinese). doi: 10.3321/j.issn:1000-131X.2006.10.001
    [6] 黎文婧, 黄辉, 贾彬, 等. 碳纤维布-钢界面黏结性能试验研究[J]. 工业建筑, 2019, 49(3):24-28.

    LI Wenjing, HUANG Hui, JIA Bin, et al. Research on the bond behavior of CFRP-steelinterface[J]. Industrial construction,2019,49(3):24-28(in Chinese).
    [7] FAWZIA S, AL-MAHAIDI R, ZHAO X L. Experimental and finite element analysis of a double strap joint between steel plates and normal modulus CFRP[J]. Composite Structures,2006,75(1-4):156-162. doi: 10.1016/j.compstruct.2006.04.038
    [8] WU C, ZHAO X, DUAN WH, et al. Bond characteristics between ultra high modulus CFRP laminates and steel[J]. Thin-Walled Structures,2012,51:147-157. doi: 10.1016/j.tws.2011.10.010
    [9] YU T, FERNANDO D, TENG J, et al. Experimental study on CFRP-to-steel bonded interfaces[J]. Composites Part B: Engineering,2012,43(5):2279-2289. doi: 10.1016/j.compositesb.2012.01.024
    [10] AL-MOSAWE A, AL-MAHAIDI R, ZHAO X L. Effect of CFRP properties, on the bond characteristics between steel and CFRP laminate under quasi-static loading[J]. Construction and Building Materials,2015,98:489-501. doi: 10.1016/j.conbuildmat.2015.08.130
    [11] 李传习, 李游, 高有为, 等. 纳米SiO2质量分数对胶粘碳纤维增强树脂复合材料板-钢搭接界面黏结性能的影响[J]. 复合材料学报, 2020, 37(10):2619-2635.

    LI Chuanxi, LI You, GAO Youwei, et al. Effect of nano-SiO2 mass fraction on the interface performance of glued carbon fiber reinforced polymer composite-steel specimen[J]. Acta Materiae Compositae Sinica,2020,37(10):2619-2635(in Chinese).
    [12] FERNANDO D, TENG J G, YU T, et al. Preparation and characterization of steel surfaces for adhesive bonding[J]. Journal of Composites for Construction,2013,17(6):04013012. doi: 10.1061/(ASCE)CC.1943-5614.0000387
    [13] HARRIS AF, BEEVERS A. The effects of grit-blasting on surface properties for adhesion[J]. International Journal of Adhesion & Adhesives,1999,19(6):445-452.
    [14] WU C, ZHAO X L, CHIU W K, et al. Effect of fatigue loading on the bond behaviour between UHM CFRP plates and steel plates[J]. Composites Part B: Engineering,2013,50:344-353. doi: 10.1016/j.compositesb.2013.02.040
    [15] AL-MOSAWE A, AL-MAHAIDI R, ZHAO X L. Bond behaviour between CFRP laminates and steel members under different loading rates[J]. Composite Structures,2016,148:236-251. doi: 10.1016/j.compstruct.2016.04.002
    [16] 邓军, 黄培彦. CFRP板与钢梁粘接的疲劳性能研究[J]. 土木工程学报, 2008, 41(5):20-24.

    DENG Jun, HUANG Peiyan. Fatigue behaviour of adhesive bonding in steel beams strengthened with a CFRP plate[J]. China Civil Engineering Journal,2008,41(5):20-24(in Chinese).
    [17] HESHMATI M, HAGHANI R, AL-EMRANI M. Durability of bonded FRP-to-steel joints: Effects of moisture, de-icing salt solution, temperature and FRP type[J]. Composites Part B: Engineering,2017,119:153-167. doi: 10.1016/j.compositesb.2017.03.049
    [18] NGUYEN T C, BAI Y, ZHAO X L, et al. Durability of steel/CFRP double strap joints exposed to sea water, cyclic temperature and humidity[J]. Composite Structures,2012,94(5):1834-1845. doi: 10.1016/j.compstruct.2012.01.004
    [19] 韦芳芳, 朱德昌, 王海涛, 等. 冻融环境下CFRP板-钢界面黏结性能试验研究[J]. 东南大学学报(自然科学版), 2020, 50(5):803-807.

    WEI Fangfang, ZHU Dechang, WANG Haitao, et al. Experimental study on bond behavior of CFRP plate-steel interface in freeze-thaw environment[J]. Journal of Southeast University (Natural Science Edition),2020,50(5):803-807(in Chinese).
    [20] NGUYEN T C, BAI Y, ZHAO X L, et al. Curing effects on steel/CFRP double strap joints under combined mechanical load, temperature and humidity[J]. Construction and Building Materials,2013,40:899-907. doi: 10.1016/j.conbuildmat.2012.11.035
    [21] YU Q Q, GAO R X, GU X L, et. al. Bond behavior of CFRP-steel double-lap joints exposed to marine atmosphere and fatigue loading[J]. Engineering Structures,2018,175:76-85. doi: 10.1016/j.engstruct.2018.08.012
    [22] 任慧韬, 李杉, 高丹盈. 荷载和恶劣环境共同作用对CFRP-钢结构黏结性能的影响[J]. 土木工程学报, 2009, 42(3):36-41. doi: 10.3321/j.issn:1000-131X.2009.03.006

    REN Huitao, LI Shan, GAO Danying. Bond behavior of CFRP and steel under dry-wet cyclic conidtion and loading[J]. China Civil Engineering Journal,2009,42(3):36-41(in Chinese). doi: 10.3321/j.issn:1000-131X.2009.03.006
    [23] XIA S, TENG J. Behaviour of FRP-to-steel bonded joints[C]//Proceedings of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005). Hong Kong: International Institute for FRP in Construction, 2005: 411–418.
    [24] HE J, XIAN G. Bond-slip behavior of fiber reinforced polymer strips-steel interface[J]. Construction & Building Materials,2017,155:250-258.
    [25] WANG H T, WU G. Bond-slip models for CFRP plates externally bonded to steel substrates[J]. Composite Structures,2018,184:1204-1214. doi: 10.1016/j.compstruct.2017.10.033
    [26] CHOTICKAI P. Effect of pre-installed corrosion on steel plate-CFRP bond characteristics[J]. International Journal of Adhesion and Adhesives,2018,84:431-437. doi: 10.1016/j.ijadhadh.2018.05.010
    [27] 中国国家标准化管理委员会. 金属和合金的腐蚀户外周期喷淋暴露试验方法: GB/T 24517—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Corrosion of metals and alloys, outdoors exposure test methods for periodic water spray: GB/T 24517—2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [28] 中国国家标准化管理委员会. 人造气氛腐蚀试验盐雾试验: GB/T 10125—2012[S]. 北京: 中国标准出版社, 2012.

    Standardization Administration of the People’s Republic of China. Corrosion tests in artificial atmospheres—Salt spray tests: GB/T 10125—2012[S]. Beijing: Standards Press of China, 2012(in Chinese).
    [29] ISO. Geometrical product specifications (GPS)—Surface texture: Areal—Part 2: Terms, definitions and surface texture parameters: ISO 25178-2[S]. Geneva: International Organization of Standardization, 2012.
    [30] ASAMI K, KIKUCHI M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years[J]. Corrosion Science,2003,45(11):2671-2688. doi: 10.1016/S0010-938X(03)00070-2
    [31] ZHAO X L, ZHANG L. State-of-the-art review on FRP strengthened steel structures[J]. Steel Construction,2007,29(8):1808-1823.
    [32] 彭福明. 纤维增强复合材料加固修复金属结构界面性能研究[D]. 西安: 西安建筑科技大学, 2005.

    PENG Fuming. Research on the interfacial performance of metaliic struetures strengthened with fiber reinforced polymers[D]. Xi’an: Xi’an University of Architecture & Technology, 2005(in Chinese).
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  681
  • HTML全文浏览量:  271
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-04-07
  • 录用日期:  2021-04-15
  • 网络出版日期:  2021-04-22
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回