留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PFC3D的机床床身用树脂矿物复合材料损伤性能细观研究

郭润兰 范雅琼 王广书 史方青 黄华

郭润兰, 范雅琼, 王广书, 等. 基于PFC3D的机床床身用树脂矿物复合材料损伤性能细观研究[J]. 复合材料学报, 2022, 39(2): 834-844. doi: 10.13801/j.cnki.fhclxb.20210420.004
引用本文: 郭润兰, 范雅琼, 王广书, 等. 基于PFC3D的机床床身用树脂矿物复合材料损伤性能细观研究[J]. 复合材料学报, 2022, 39(2): 834-844. doi: 10.13801/j.cnki.fhclxb.20210420.004
GUO Runlan, FAN Yaqiong, WANG Guangshu, et al. Meso-scale study on damage performance of resin mineral composite material for machine tool bed based on PFC3D[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 834-844. doi: 10.13801/j.cnki.fhclxb.20210420.004
Citation: GUO Runlan, FAN Yaqiong, WANG Guangshu, et al. Meso-scale study on damage performance of resin mineral composite material for machine tool bed based on PFC3D[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 834-844. doi: 10.13801/j.cnki.fhclxb.20210420.004

基于PFC3D的机床床身用树脂矿物复合材料损伤性能细观研究

doi: 10.13801/j.cnki.fhclxb.20210420.004
基金项目: 国家自然科学基金(51965037)
详细信息
    通讯作者:

    黄华,博士,副教授,硕士生导师,研究方向为数控技术及装备  E-mail:hh318872@126.com

  • 中图分类号: TH145.9

Meso-scale study on damage performance of resin mineral composite material for machine tool bed based on PFC3D

  • 摘要: 为研究机床床身用树脂矿物复合材料在典型工况下的损伤演化过程、破坏失效形式,基于颗粒流数值模拟技术(Three-dimensional particle flow code,PFC3D),考虑级配和随机骨料形状,建立了包含骨料、界面过渡区、树脂基质、孔隙的树脂矿物复合材料四项介质离散元模型。结合机床典型工况下的受力情况,研究了树脂矿物复合材料损伤演化过程及裂纹分布规律,并从细观角度研究了裂纹萌生、扩展、贯穿的形成机制。研究结果表明:(1) 树脂矿物复合材料损伤演化过程可以明显分为四个阶段;(2) 骨料与树脂基质的界面过渡区首先起裂,并在与加载平行且无大骨料支撑的薄弱位置出现试件的压溃现象。该项研究为树脂矿物复合材料作为机床基础件材料的损伤性能细观研究提供参考依据。

     

  • 图  1  树脂矿物复合材料模拟级配与实验级配数据对比

    Figure  1.  Comparison chart of simulated gradation and experimental gradation data of resin mineral composite

    图  2  径粒比和填充颗粒间距对随机刚性颗粒Clump形状的影响

    Figure  2.  Influence of the parameters ratio and distance on the clump shape of random rigid particles

    图  3  树脂矿物复合材料接触类型示意图

    Figure  3.  Contact type diagram of resin mineral composite

    图  4  树脂矿物复合材料各结构间接触模型示意图

    Figure  4.  Schematic diagram of contact model between each structures of resin mineral composite

    图  5  树脂矿物复合材料模型平衡前后模型对比

    Figure  5.  Comparison of models before and after balancing of resin mineral composite

    图  6  树脂矿物复合材料数字化模型细观参数标定过程

    Figure  6.  Meso-parameter calibration process of digital model of resin-mineral composite materials

    图  7  树脂矿物复合材料本构关系曲线

    Figure  7.  Constitutive relationship curve of resin mineral composite

    图  8  树脂矿物复合材料损伤演化过程的阶段划分

    Figure  8.  Stage division of damage evolution process of resin mineral composite

    图  9  树脂矿物复合材料三轴压缩条件下的起裂应力、损伤应力、峰值应力演化图

    Figure  9.  Evolution diagram of crack initiation stress damage stress and peak stress of resin mineral composite under triaxial compression

    图  10  树脂矿物复合材料微裂纹空间分布规律

    Figure  10.  Spatial distribution of microcracks of resin mineral composite

    图  11  树脂矿物复合材料微裂纹二维空间分布规律

    Figure  11.  Spatial distribution of microcracks in two dimensions of resin mineral composite

    图  12  树脂矿物复合材料45°截面微裂纹分布规律

    Figure  12.  Distribution of micro-cracks in 45° section

    图  13  树脂矿物复合材料135°截面微裂纹分布规律

    Figure  13.  Distribution of micro-cracks in 135° section

    图  14  树脂矿物复合材料起裂位置及裂纹扩展现象

    Figure  14.  Crack initiation location and crack propagation phenomenon of resin mineral composite

    图  15  文献[6]中不同环氧树脂含量下树脂矿物复合材料试块28天抗压试验典型破坏形态

    图15(a)表示环氧树脂含量为0wt%的1号试块,图15(b)表示环氧树脂含量为0wt%的2号试块

    Figure  15.  Typical failure modes of the 28 days compression test of the resin mineral composite material test block with different epoxy resin contents in Ref. [6]

    图  16  树脂矿物复合材料数字化模型颗粒速度场变化

    Figure  16.  Variation of particle velocity field in digital model of resin mineral composite

    图  17  树脂矿物复合材料数字化模型颗粒位移场变化

    Figure  17.  Variation of particle displacement field in digital model of resin mineral composite

    图  18  树脂矿物复合材料规则骨料模型本构关系模拟曲线

    Figure  18.  Simulation curves of constitutive relationship of regular aggregate model of resin mineral composite

    图  19  树脂矿物复合材料起裂应力对比

    Figure  19.  Crack initiation stress comparison of resin mineral composite

    图  20  树脂矿物复合材料本构关系对比

    Figure  20.  Comparison of constitutive relation of resin mineral composite

    图  21  树脂矿物复合材料损伤演化曲线对比

    Figure  21.  Comparison of damage evolution curves of resin mineral composite

    表  1  树脂矿物复合材料骨料级配配方

    Table  1.   Aggregate grading formula of resin mineral composite

    Particle diameter/mm0.1-0.30.3-0.60.6-1.181.18-2.362.36-5
    Content/wt%21.39.9142133.8
    下载: 导出CSV

    表  2  随机刚性颗粒Clump填充控制参数的取值

    Table  2.   Random rigid particle clump filling control parameters

    Number of iterationFirstSecondThirdFourthFifthSixth
    Ratio0.50.40.30.20.20.2
    Distance100110120130150180
    下载: 导出CSV

    表  3  树脂矿物复合材料内平行黏结模型细观参数标定值

    Table  3.   Calibration values of mesoscopic parameters of linear parallel bond model of resin mineral composite

    Parameter nameCalibration
    value
    Contact elastic modulus Ec/GPa 46.08
    Stiffness ratio k 1.15
    Normal critical damping ratio dn 0
    Tangential critical damping ratio ds 0
    Coefficient of friction fc 0.15
    Bond normal strength Pten/MPa 130
    Bond tangential strength Pshear/MPa 130
    Friction angle fa/(°) 45
    下载: 导出CSV

    表  4  树脂矿物复合材料内接触黏结模型细观参数标值

    Table  4.   Calibration values of mesoscopic parameters of linear contact bond model of resin mineral composite

    Parameter nameCalibration
    value
    Effective modulus Em/GPa 55
    Stiffness ratio k 5
    Normal critical damping ratio dn 0
    Tangential critical damping ratio ds 0
    Coefficient of friction fc 0.4
    Tensile strength S/MPa 24
    Adhesion a/MPa 24
    下载: 导出CSV

    表  5  树脂矿物复合材料三轴压缩数值计算结果

    Table  5.   Numerical calculation results of triaxial compression for resin mineral composites

    Working
    condition
    Specimen
    type
    Peak stress
    σp/MPa
    Peak strain
    εp/%
    Tangential
    modulus/GPa
    Initiation
    stress σi/MPa
    Damage
    stress σd/MPa
    σi/σpσd/σp
    Typical working
    conditions
    Regular
    hexahedron
    83.80.013414.41620.4683.80.2441
    下载: 导出CSV
  • [1] YIN J, ZHANG J, WANG T, et al. Mechanical properties optimization of resin mineral composite for machine tool bed[J]. Journal of Reinforced Plastics and Composites,2015,34(4):329-340. doi: 10.1177/0731684415571781
    [2] 尹纪财. 机床用树脂矿物复合材料力学性能及其湿热老化机理研究[D]. 济南: 山东大学, 2016.

    YIN Jicai. Research on the mechanical properties and damp-heat aging mechanism of resin-mineral composite materials for machine tools[D]. Ji’nan: Shandong University, 2016(in Chinese).
    [3] 任娜娜. 机床用树脂矿物复合材料的制备及性能研究[D]. 南京: 南京理工大学, 2015.

    RAN Na’na. Research on preparation and performance of resin mineral composite material for machine tool[D]. Nanjing: Nanjing University of Science and Technology, 2015(in Chinese).
    [4] SHENG P, ZHANG J, JI Z. An advanced 3D modeling method for concrete-like particle-reinforced composites with high volume fraction of randomly distributed particles[J]. Composites Science and Technology,2016,134:26-35. doi: 10.1016/j.compscitech.2016.08.009
    [5] ZHAO K, WAN S M, LIN B. Visualization of random particle packing model for resin concrete[J]. Applied Mechanics and Materials,2012,215-216:1483-1487.
    [6] 李晓周. 新型环氧树脂混凝土轴心受压构件的受力性能研究[D]. 长春: 吉林建筑大学, 2019.

    LI Xiaozhou. Study on mechanical properties of new type epoxy resin concrete members under axial compression[D]. Changchun: Jilin University of Architecture 2019(in Chinese).
    [7] 田会文, 周臻, 陆纪平, 等. 纤维增强树脂复合材料约束超高性能混凝土轴压性能的细观数值模拟[J]. 复合材料学报, 2020, 37(7):1629-1638.

    TIAN Huiwen, ZHOU Zhen, LI Jiping, et al. Micro-numerical simulation of axial compression properties of ultra high performance concrete confined by fiber reinforced resin composite[J]. Acta Materiae Compositae Sinica,2020,37(7):1629-1638(in Chinese).
    [8] 屈瑾, 娄宗科, 刘兆松. 基于细观层次的混凝土随机骨料建模[J]. 长江科学院院报, 2015, 32(4):129-132. doi: 10.3969/j.issn.1001-5485.2015.04.025

    QU Jin, LOU Zongke, LIU Zhaosong. Random aggregate modeling of concrete based on meso-level[J]. Journal of Yangtze River Scientific Research Institute,2015,32(4):129-132(in Chinese). doi: 10.3969/j.issn.1001-5485.2015.04.025
    [9] 乔倩倩. 基于细观力学方法的混凝土多尺度损伤力学行为研究[D]. 大连: 大连理工大学, 2015.

    QIAO Qianqian. Research on multi-scale damage mechanical behavior of concrete based on mesomechanics method[D]. Dalian: Dalian University of Technology, 2015(in Chinese).
    [10] 肖诗云, 乔倩倩. 混凝土等效弹性模量细观影响因素[J]. 沈阳建筑大学学报 (自然科学版), 2015, 31(4):637-643.

    XIAO Shiyun, QIAO Qianqian. Microscopic influencing factors of concrete equivalent elastic modulus[J]. Journal of Shenyang Jianzhu University (Natural Science Edition),2015,31(4):637-643(in Chinese).
    [11] AI S G, TANG L Q, MAO Y Q, et al. Effect of aggregate distribution and shape on failure behavior of polyurethane polymer concrete under tension[J]. Computational Materials Science,2013,67(12):133-139.
    [12] Ai S, TANG L, MAO Y, et al. Numerical analysis on failure behaviour of polyurethane polymer concrete at high strain rates in compression[J]. Computational Materials Science,2013,69(3):389-395.
    [13] 郭晓辉, 张新乐, 曹海, 等. 聚合物混凝土抗局部破坏效应试验研究[C]//第 20 届全国结构工程学术会议论文集 (第Ⅰ册), 北京: 中国力学学会工程力学编辑部, 2011: 494-498.

    GUO Xiaohui, ZHANG Xinle, CAO Hai, et al. Experimental study on the anti-local damage effect of polymer concrete[C]// Proceedings of the 20th National Structural Engineering Conference (Volume I), Beijing: Engineering Mechanics Editorial Department of Chinese Society of Mechanics, 2011: 494-498(in Chinese).
    [14] 石崇, 张超, 王盛年. 颗粒流(PFC5.0)数值模拟技术与应用[M]. 北京: 中国建筑工业出版社, 2018: 1-462.

    SHI Chong, ZHANG Chao, WANG Shengnian. Particle flow (PFC5.0) numerical simulation technology and application[M]. Beijing: China Construction Industry Press, 2018: 1-462(in Chinese).
    [15] 汪杰, 付建新, 宋卫东, 等. 岩石-充填体组合模型力学特性及微裂纹演化特征颗粒流模拟[J]. 中国矿业大学学报, 2020(3):453-462.

    WANG Jie, FU Jianxin, SONG Weidong, et al. Particle flow simulation of mechanical properties and microcrack evolution characteristics of rock-backfill combined model[J]. Journal of China University of Mining & Technology,2020(3):453-462(in Chinese).
    [16] 邓树新, 郑永来, 冯利坡, 等. 试验设计法在硬岩 PFC 3D 模型细观参数标定中的应用[J]. 岩土工程学报, 2019, 41(4):655-664.

    DENG Shuxin, ZHENG Yonglai, FENG Lipo, et al. Application of design of experiments in the calibration of meso-parameters of hard rock PFC 3D model[J]. Chinese Journal of Geotechnical Engineering,2019,41(4):655-664(in Chinese).
    [17] 朱月风. 自愈型微胶囊在沥青路面中的力学行为及性能需求研究[D]. 西安: 长安大学, 2017.

    ZHU Yuefeng. Research on mechanical behavior and performance requirements of healing microcapsules in asphalt pavement[D]. Xi’an: Chang’an University, 2017(in Chinese).
    [18] 黄华, 李典伦, 邓文强, 等. 混凝土数控机床支承件组合结构设计与优化研究[J]. 机械科学与技术, 2021, 40(3): 394-402.

    HUANG Hua, LI Dianlun, DENG Wenqiang, et al. Research on design and optimization of combined structure of supports for concrete CNC machine tools[J]. Mechanical Science and Technology, 2021, 40(3): 394-402(in Chinese).
    [19] TOUFIGH V, ABYANEH M J, JAFARI K. Study of behavior of concrete under axial and triaxial compression[J]. ACI Materials Journal,2017,114(4):619-629.
    [20] 尹大伟, 陈绍杰, 刘兴全, 等. 节理特性对花岗岩起裂应力和损伤应力影响规律颗粒流模拟[J]. 应用基础与工程科学学报, 2018, 26(4):808-820.

    YIN Dawei, CHEN Shaojie, LIU Xingquan, et al. Particle flow simulation of the influence of joint characteristics on the initiation and damage stress of granite[J]. Journal of Applied Foundation and Engineering Science,2018,26(4):808-820(in Chinese).
  • 加载中
图(21) / 表(5)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  265
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-04-08
  • 录用日期:  2021-04-15
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回