留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于长江下游超细疏浚砂的碱激发矿渣混凝土力学性能

李升涛 陈徐东 张伟 冯子鸣 王润民

李升涛, 陈徐东, 张伟, 等. 基于长江下游超细疏浚砂的碱激发矿渣混凝土力学性能[J]. 复合材料学报, 2022, 39(1): 335-343. doi: 10.13801/j.cnki.fhclxb.20210419.003
引用本文: 李升涛, 陈徐东, 张伟, 等. 基于长江下游超细疏浚砂的碱激发矿渣混凝土力学性能[J]. 复合材料学报, 2022, 39(1): 335-343. doi: 10.13801/j.cnki.fhclxb.20210419.003
LI Shengtao, CHEN Xudong, ZHANG Wei, et al. Mechanical properties of alkali activated slag concrete with ultra fine dredged sand from Yangtze River[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 335-343. doi: 10.13801/j.cnki.fhclxb.20210419.003
Citation: LI Shengtao, CHEN Xudong, ZHANG Wei, et al. Mechanical properties of alkali activated slag concrete with ultra fine dredged sand from Yangtze River[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 335-343. doi: 10.13801/j.cnki.fhclxb.20210419.003

基于长江下游超细疏浚砂的碱激发矿渣混凝土力学性能

doi: 10.13801/j.cnki.fhclxb.20210419.003
基金项目: 国家自然科学基金(51979090);江苏省自然科学优秀青年基金(BK20190075);中央高校基本科研业务费专项资金(B200202076)
详细信息
    通讯作者:

    陈徐东,教授,博士生导师,研究方向为混凝土材料  E-mail:cxdong1985@163.com

  • 中图分类号: TU528.01

Mechanical properties of alkali activated slag concrete with ultra fine dredged sand from Yangtze River

  • 摘要: 分析了长江下游航道超细疏浚砂的理化性质,并以超细疏浚砂为原料,设计了5种不同疏浚砂掺量的碱激发矿渣混凝土(AASC)配合比,研究了其流动性、抗压强度、劈拉强度和吸水率的变化。通过SEM、XRD和压汞(MIP)技术,分析了AASC的物相组成和微观结构。研究表明:长江下游航道的超细疏浚砂颗粒细度模数在0.1~0.5之间。随着超细疏浚砂掺量的提升,试件的抗压强度和劈拉强度呈先上升后降低的趋势,而其流动性持续下降。在疏浚砂掺量(疏浚砂与细骨料的质量比)为50%时,AASC具有较好的力学性能和工作性能。试件的吸水率、密度测试以及SEM和MIP观察表明,适当掺入疏浚砂能够增加混凝土密实度,改善混凝土界面过渡区的结构,但过量疏浚砂导致混凝土流动性降低,且混凝土内的多害孔隙增加。

     

  • 图  1  长江下游两区域疏浚砂集配曲线

    Figure  1.  Gradings of dune sand in two regions of the lower Yangtze River ((a) Particle size accumulation curve; (b) Particle size distribution)

    图  2  偏光显微镜下砂颗粒形貌特征

    Figure  2.  Morphologies of sand particles

    图  3  不同疏浚砂掺量WD的AASC抗压强度

    Figure  3.  Compressive strength of AASC with different replacement rates WD of dredged sand

    图  4  不同细骨料的AASC试件压缩破坏断裂面

    Figure  4.  Compression failure fracture surface of AASC specimens with different fine aggregates

    图  5  不同疏浚砂掺量AASC的劈拉强度

    Figure  5.  Splitting tensile strength of AASC with different replacement rates of dredged sand

    图  6  不同疏浚砂掺量AASC的坍落度

    Figure  6.  Slump of AASC with different replacement rates of dredged sand

    图  7  不同疏浚砂掺量AASC的吸水率和密度

    Figure  7.  Water absorption and density of AASC with different replacement rates of dredged sand

    图  8  标养28天的AASC50砂浆体系物相组成

    Figure  8.  Phase composition of AASC50 mortar system in standard curing for 28 days

    图  9  AASC50与AASC0的SEM图像与EDS能谱

    Figure  9.  SEM images and EDS spectra of AASC50 and AASC0

    ITZ—Interfacial transition zone

    图  10  不同疏浚砂掺量AASC的压汞试验(MIP)结果

    Figure  10.  Experimental results of AASC with different replacement rates of dredged sand obtained by mercury injection test (MIP)

    表  1  矿渣化学成分

    Table  1.   Chemical composition of slag

    ComponentCaOSiO2Al2O3MgOTiO2SNa2OK2O
    Ratio/wt% 39.42 33.04 15.64 7.80 1.28 1.05 0.61 0.39
    下载: 导出CSV

    表  2  长江疏浚砂具体物理性能参数

    Table  2.   Physical properties of dredged sand from Yangtze River

    Apparent density/
    (kg·m−3)
    Bulk density/
    (kg·m−3)
    Higher feed density/
    (kg·m−3)
    Water
    content/wt%
    Clay
    content/wt%
    Porosity/
    vol%
    Fineness
    modulus
    2686-26951331-14042400-280011.4-17.81.9-3.29.7-18.50.1-0.5
    下载: 导出CSV

    表  3  不同疏浚砂掺量的碱激发矿渣混凝土(AASC)配合比 WD

    Table  3.   Mix proportion of alkali activated slag concrete (AASC) with different dredged sand contents $ {{W}}_{\rm{D}} $ (kg·m−3)

    GroupStoneDredged sandRiver sandFly ashSlagSodium silicateWaterWater reducer
    AASC0 1125 0 606 150 350 140 155 0.87
    AASC25 1125 151.5 454 150 350 140 155 0.87
    AASC50 1125 189 189 150 350 140 155 0.87
    AASC75 1125 454 151.5 150 350 140 155 0.87
    AASC100 1125 606 0 150 350 140 155 0.87
    下载: 导出CSV
  • [1] LIRER S, LIGUORI B, CAPASSO I, et al. Mechanical and chemical properties of composite materials made of dredged sediments in a fly-ash based geopolymer[J]. Journal of Environmental Management,2017,191:1-7.
    [2] 李青云. 推进长江航道疏浚砂综合利用[N]. 中国水运报, 2020-04-01(1).

    LI Qingyun. Promoting comprehensive utilization of dredged sand in Yangtze River[N]. China Water Transport News, 2020-04-01(1). (in Chinese).
    [3] 丁慧, 孙秀丽, 刘文化, 等. 固化疏浚淤泥作路基材料工程特性试验研究[J]. 土木建筑与环境工程, 2017, 39(2):11-18.

    DING Hui, SUN Xiuli, LIU Wenhua, et al. Experimental analysis of engineering properties of solidified sludge as roadbed filling material[J]. Journal of Civil, Architectural & Environmental Engineering,2017,39(2):11-18(in Chinese).
    [4] SIHAM K, FABRICE B, EDINE A N, et al. Marine dredged sediments as new materials resource for road construction[J]. Waste Management,2008,28(5):919-928. doi: 10.1016/j.wasman.2007.03.027
    [5] 何宁, 沈雪松, 周彦章, 等. 大型疏浚土充填袋筑堤技术研究[J]. 岩土工程学报, 2015, 37(3):440-445.

    HE Ning, SHEN Xuesong, ZHOU Yanzhang, et al. Study on large dredged soil filling bag embankment technology[J]. Journal of Geotechnical Engineering,2015,37(3):440-445(in Chinese).
    [6] AMAR M, BENZERZOUR M, SAFHI A E M, et al. Durability of a cementitious matrix based on treated sediments[J]. Case Studies in Construction Materials,2018,8:258-276. doi: 10.1016/j.cscm.2018.01.007
    [7] CHEN H J, YANG M D, TANG C W, et al. Producing synthetic lightweight aggregates from reservoir sediments[J]. Construction and Building Materials,2012,28(1):387-394. doi: 10.1016/j.conbuildmat.2011.08.051
    [8] HUANG X, LI G, PAN X, et al. Kinetic characteristics of lightweight aggregates obtained from dredged sediment[J]. Journal of Thermal Analysis and Calorimetry,2016,126(3):1201-1209. doi: 10.1007/s10973-016-5610-8
    [9] 刘霞, 李峰, 佘殷鹏. 玄武岩纤维增强聚合物筋增强珊瑚礁砂混凝土柱轴压试验[J]. 复合材料学报, 2020, 37(10):2428-2438.

    LIU Xia, LI Feng, SHE Yinpeng. Axial compression test of basalt fiber reinforced polymer reinforced coral reef and sand aggregate concrete column[J]. Acta Materiae Compositae Sinica,2020,37(10):2428-2438(in Chinese).
    [10] PENG X, ZHOU Y, JIA R, et al. Preparation of non-sintered lightweight aggregates from dredged sediments and modification of their properties[J]. Construction and Building Materials,2017,132:9-20. doi: 10.1016/j.conbuildmat.2016.11.088
    [11] TANG C W, CHEN H J, WANG S Y, et al. Production of synthetic lightweight aggregate using reservoir sediments for concrete and masonry[J]. Cement and Concrete Composites,2011,33(2):292-300. doi: 10.1016/j.cemconcomp.2010.10.008
    [12] BERNAL S A, RUBY M D G, PEDRAZA A L, et al. Effect of binder content on the performance of alkali-activated slag concretes[J]. Cement and Concrete Research,2011,41(1):1-8. doi: 10.1016/j.cemconres.2010.08.017
    [13] FANG G, ZHANG M. Multiscale micromechanical analysis of alkali-activated fly ash-slag paste[J]. Cement and Concrete Research,2020,135:106141. doi: 10.1016/j.cemconres.2020.106141
    [14] SEO J, BAE S J, JANG D I, et al. Thermal behavior of alkali-activated fly ash/slag with the addition of an aerogel as an aggregate replacement[J]. Cement and Concrete Composites,2020,106:103462.
    [15] ADESANYA E, OHENOJA K, DI MARIA A, et al. Alternative alkali-activator from steel-making waste for one-part alkali-activated slag[J]. Journal of Cleaner Production,2020,274:123020. doi: 10.1016/j.jclepro.2020.123020
    [16] 黄鑫, 姜景山, 孙天洋, 等. 玄武岩-碳纤维/矿渣混凝土力学性能正交试验[J]. 复合材料学报, 2020, 37(7):1743-1753.

    HUANG Xin, JIANG Jingshan, SUN Tianyang. et al. Orthogonal test on mechanical properties of basalt carbon fiber / slag concrete[J]. Acta Materiae Compositae Sinica,2020,37(7):1743-1753(in Chinese).
    [17] 中华人民共和国水利部. 水工混凝土试验规程: SL 352—2006[S]. 北京: 中国水利水电出版社, 2006.

    Ministry of Water Resources of the People's Republic of China. Test code for hydraulic concrete: SL 352—2006[S]. Beijing: China Water & Power Press, 2006 (in Chinese).
    [18] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2003.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081—2002[S]. Beijing: China Architecture & Building Press, 2003 (in Chinese).
    [19] 郑文忠, 邹梦娜, 王英. 碱激发胶凝材料研究进展[J]. 建筑结构学报, 2019, 40(1):28-39.

    ZHENG Wenzhong, ZOU Mengna, WANG Ying. Research progress of alkali activated cementitious materials[J]. Journal of Building Structure,2019,40(1):28-39(in Chinese).
    [20] SIDDIQUE R, SCHUTTER G D, NOUMOWE A. Effect of used-foundry sand on the mechanical properties of concrete[J]. Construction and Building Materials,2009,23(2):976-980. doi: 10.1016/j.conbuildmat.2008.05.005
    [21] 郭东, 苏春义, 彭自强, 等. 海水拌和珊瑚礁砂混凝土力学性能及微观结构[J]. 建筑材料学报, 2018, 21(1):41-46. doi: 10.3969/j.issn.1007-9629.2018.01.007

    GUO Dong, SU Chunyi, PENG Ziqiang. et al. Mechanical properties and microstructure of coral reef sand concrete mixed with seawater[J]. Journal of Building Materials,2018,21(1):41-46(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.01.007
    [22] 李玉根, 张慧梅, 刘光秀, 等. 风积砂混凝土基本力学性能及影响机理[J]. 建筑材料学报, 2020, 23(5):1212-1221. doi: 10.3969/j.issn.1007-9629.2020.05.030

    LI Yugen, ZHANG Huimei, LIU Guangxiu, et al. Basic mechanical properties and influence mechanism of aeolian sand concrete[J]. Journal of Building Materials,2020,23(5):1212-1221(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.05.030
    [23] SIDDIQUE R, AGGARWAL Y, AGGARWAL P, et al. Strength, durability and micro-structural properties of concrete made with used-foundry sand (UFS)[J]. Construction and Building Materials,2011,25(4):1916-1925. doi: 10.1016/j.conbuildmat.2010.11.065
    [24] JOSE I E G, FUENTES A F, GOROKHOVSKY A, et al. Hydration products and reactivity of blast-furnace slag activated by various alkalis[J]. Journal of the American Ceramic Society,2010,86(12):2148-2153.
    [25] ZHANG J, SHI C, ZHANG Z. Carbonation induced phase evolution in alkali-activated slag/fly ash cements: The effect of silicate modulus of activators[J]. Construction and Building Materials,2019,223:556-582.
    [26] GRUSKOVNJAK A, LOTHENBACH B, HOLZER L, et al. Hydration of alkali-activated slag: Comparison with ordinary Portland cement[J]. Advances in Cement Research,2006,18(3):119-128. doi: 10.1680/adcr.2006.18.3.119
    [27] 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999: 120-125.

    WU Zhongwei, LIAN Huizhen. High performance concrete[M]. Bejjing: China Railway Publishing House, 1999: 120-125 (in Chinese).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  708
  • HTML全文浏览量:  225
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 修回日期:  2021-04-07
  • 录用日期:  2021-04-10
  • 网络出版日期:  2021-04-20
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回