留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于插层法协同提升碳纤维树脂基复合材料的导电性能与层间韧性

向东 刘家良 赵春霞 李辉 王斌 李云涛

向东, 刘家良, 赵春霞, 等. 基于插层法协同提升碳纤维树脂基复合材料的导电性能与层间韧性[J]. 复合材料学报, 2022, 39(1): 137-149. doi: 10.13801/j.cnki.fhclxb.20210407.001
引用本文: 向东, 刘家良, 赵春霞, 等. 基于插层法协同提升碳纤维树脂基复合材料的导电性能与层间韧性[J]. 复合材料学报, 2022, 39(1): 137-149. doi: 10.13801/j.cnki.fhclxb.20210407.001
XIANG Dong, LIU Jialiang, ZHAO Chunxia, et al. Synergistic improvement of electrical conductivity and interlaminar toughness of carbon fiber resin matrix composites based on intercalation method[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 137-149. doi: 10.13801/j.cnki.fhclxb.20210407.001
Citation: XIANG Dong, LIU Jialiang, ZHAO Chunxia, et al. Synergistic improvement of electrical conductivity and interlaminar toughness of carbon fiber resin matrix composites based on intercalation method[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 137-149. doi: 10.13801/j.cnki.fhclxb.20210407.001

基于插层法协同提升碳纤维树脂基复合材料的导电性能与层间韧性

doi: 10.13801/j.cnki.fhclxb.20210407.001
基金项目: 四川省国际合作项目(2021YFH0031)
详细信息
    通讯作者:

    向东,博士,副教授,硕士生导师,研究方向为聚合物基复合材料 E-mail:dxiang01@hotmail.com

    李云涛,博士,教授,博士生导师,研究方向为高分子材料 E-mail: yuntaoli@swpu.edu.cn

  • 中图分类号: TB332

Synergistic improvement of electrical conductivity and interlaminar toughness of carbon fiber resin matrix composites based on intercalation method

  • 摘要: 碳纤维增强树脂基复合材料(CFRP)因其低密度、高比强度等特点,在航空航天领域得到了广泛的应用,但其导电性和层间韧性的不足降低了CFRP作为飞机结构件的使用安全性。为了改善CFRP弱的导电性和层间断裂韧性,本文采用溶液浇铸法制备了多壁碳纳米管(MWCNTs)和石墨烯纳米片(GNPs)掺杂聚醚砜(PES)的导电热塑性薄膜(CTFs)。然后将CTFs交错放入碳纤维/环氧树脂(CF/EP)预浸料中制得复合材料层压板,并对其导电性和层间断裂韧性进行了探究。结果表明,相较于对照样品(CS),在横向(Y)和厚度(Z)方向,层压板的电导率分别提高了474%和554%。采用双悬臂梁(DCB)和端口弯曲(ENF)法评估了Mode I和Mode II层间断裂韧性,当插入的CTF中纳米填料质量比为CNT∶GNP=2∶1时,复合材料层压板的Mode I层间断裂韧性(GIC)和断裂阻抗(GIR)分别提高了441%和165%,此外,纳米填料质量比CNT∶GNP=8∶1时,Mode II层间断裂韧性(GIIC)提高了79%。最后通过SEM观察了复合材料的微观结构形貌,并分析了复合材料的失效机制。

     

  • 图  1  导电热塑性薄膜(CTFs)和CTF交错CF/EP复合材料层压板的制作工艺:碳纳米管(CNT)/石墨烯纳米片(GNP)/聚醚砜(PES)膜 (a)、GNP/PES膜 (b) 和层压板的热压成型 (c)

    MWCNTs—Multi-walled carbon nanotubes; DMF—N, N-dimethylformamide

    Figure  1.  Manufacturing process of conductive thermoplastic films (CTFs) and CTFs interlaced CF/EP composite laminates: Carbon nanotube (CNT)/graphene nanoplatelets (GNP)/ polyethersulfone (PES) film (a), GNP/PES film (b) and hot-press molding of laminate (c)

    图  2  CF/EP预浸料固化工艺 (a)、Mode I 层间断裂韧性测试样品 (b)、Mode II层间断裂韧性测试样品 (c) 和层压板电性能测试样品 (d)

    Figure  2.  CF/EP prepreg curing process (a), Mode I interlayer fracture toughness test sample (b), Mode II interlayer fracture toughness test sample (c) and laminate electrical property test sample (d)

    图  3  Mode I 断裂韧性测试装置 (a) 和Mode II 断裂韧性测试装置 (b)

    Figure  3.  Mode I fracture toughness test device (a) and Mode II fracture toughness test device (b)

    图  4  掺杂不同质量比的CNT/GNP的CTFs的电导率

    Figure  4.  Electrical conductivity of CTFs containing different mass ratios of CNT/GNP

    图  5  不同质量比的CTFs的SEM图像:((a), (b)) CNT;((c), (d)) CNT∶GNP=8∶1;((e), (f)) CNT∶GNP=2∶1;((g), (h)) GNP

    Figure  5.  SEM images of CTFs with different mass ratios: ((a), (b)) CNT; ((c), (d)) CNT∶GNP=8∶1; ((e), (f)) CNT∶GNP=2∶1; ((g), (h)) GNP

    图  6  加载不同质量比的CNT/GNP的CTF插层的复合材料层压板和对照样品(无插页)在XYZ三个方向上的电导率

    Figure  6.  Conductivity in X, Y, and Z directions of composite laminates loaded with CTF interlayers of CNT/GNP with different mass ratios and control samples (Without interleaf)

    图  7  插入质量比CNT∶GNP=2∶1的CTF插层复合材料导电层压板的SEM图像:((a), (b)) 低放大倍数;((c), (d)) 高放大倍数

    Figure  7.  SEM image of CTFs (CNT∶GNP=2∶1) intercalated composite laminate: ((a), (b)) Low magnification; ((c), (d)) High magnification

    图  8  CNT和GNP通过协同增强作用改善复合材料的导电路径示意图((a)无CTF插层的复合材料层压板;(b)有CTF插层的复合材料层压板)

    Figure  8.  Schematic diagram of CNT and GNP improving the conductive path of composites through synergistic reinforcement ((a) Composite laminates without CTF intercalation; (b) Composite laminates with CTF intercalation)

    图  9  不同插层CNT/GNP复合材料的典型双悬臂梁(DCB)荷载-位移曲线

    Figure  9.  Typical double cantilever beam (DCB) load-displacement curves of different interlayers CNT/GNP composite materials

    图  10  不同插层CNT/GNP复合材料的Mode I断裂韧性-(aa0)曲线

    Figure  10.  Mode I fracture toughness-(aa0) curves obtained for CNT/GNP composites with different interlayers

    图  11  不同插层的复合材料的Mode I断裂韧性和断裂阻抗

    GIC—Mode I interlaminar fracture toughness; GIR—Fracture resistance

    Figure  11.  Mode I fracture toughness and fracture resistance of composite materials with different interlayers

    图  12  通过端口弯曲(ENF)试验得到的层间含有不同插层CNT/GNP复合材料的典型荷载-位移曲线

    Figure  12.  Typical load–displacement curves obtained by end-notched flexure (ENF) tests for CNT/GNP composites with interlayers

    图  13  含有不同插层的CNT/GNP复合材料层压板的Mode II 断裂韧性

    Figure  13.  Mode II fracture toughness of CNT/GNP composite laminates with different interlayers

    图  14  DCB测试后对照样品 ((a), (b)) 和分别插入CNT ((c), (d))、CNT/GNP=2∶1 ((e), (f)) 和GNP ((g), (h)) 的CTFs 制得的CNT/GNP复合材料层压板断裂面的SEM图像

    Figure  14.  SEM images of fracture surface control samples ((a), (b)) and CNT/GNP composite laminates obtained by interleaving CTFs with CNT ((c), (d)), CNT/GNP=2∶1 ((e), (f)) and GNP ((g), (h)) after DCB test

    图  15  裂纹在基体界面中的扩展示意图:无CTF插层的CF/EP复合材料层压板 (a) 和有CTF插层的CNT/GNP复合材料层压板 (b)

    Figure  15.  Diagram of crack propagation in matrix interface: CF/EP composite laminates without CTF intercalation (a) and CNT/GNP composite laminates with CTF intercalation (b)

    图  16  ENF测试后对照样品 ((a), (b)) 和分别插入CNT ((c), (d))、CNT∶GNP=8∶1 ((e), (f)) 和GNP ((g), (h)) 的导电热塑性薄膜制得的CNT/GNP复合材料层压板的断裂面SEM图像

    Figure  16.  SEM images of fracture surface control samples ((a), (b)) and CNT/GNP composite laminates obtained by interleaving CTFs with CNT ((c), (d)), CNT/GNP=8:1 ((e), (f)) and GNP ((g), (h)) after ENF test

    表  1  单向碳纤维/环氧树脂(CF/EP)预浸料规格参数

    Table  1.   Specifications of unidirectional carbon fiber/epoxy resin (CF/EP) prepreg

    Specification parameterValue
    Carbon fiber model T700
    Fiber mass per unit area/(g·m−2) 132±4
    Resin content/wt% 35±2
    Monolayer prepreg thickness/mm 0.125
    Epoxy resin model E1010
    Tensile strength in fiber direction/MPa 2500
    Bending strength/MPa 1650
    下载: 导出CSV
  • [1] CHAND S. Review carbon fibers for composites[J]. Journal of Materials Science,2000,35(6):1303-1313. doi: 10.1023/A:1004780301489
    [2] KATNAM K B, SILVA L F M D, YOUNG T M. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities[J]. Progress in Aerospace Sciences,2013,61:26-42. doi: 10.1016/j.paerosci.2013.03.003
    [3] PARTRIDGE I K, CARTIÉ D D R. Delamination resistant laminates by Z-Fiber® pinning: Part I manufacture and fracture performance[J]. Composites Part A,2005,36(1):55-64. doi: 10.1016/S1359-835X(04)00180-0
    [4] RAHMAN M M, ZAINUDDIN S, HOSUR M V, et al. Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs[J]. Composite Structures,2012,94(8):2397-2406. doi: 10.1016/j.compstruct.2012.03.014
    [5] SONG Q, LI K, QI L, et al. The reinforcement and toughening of pyrocarbon-based carbon/carbon composite by controlling carbon nanotube growth position in carbon felt[J]. Materials Science and Engineering A, 2013, 564: 71-75.
    [6] BOROUJENI A Y, TEHRANI M, NELSON A J, et al. Hybrid carbon nanotube-carbon fiber composites with improved in-plane mechanical properties[J]. Composites Part B,2014,66:475-483. doi: 10.1016/j.compositesb.2014.06.010
    [7] BRUNNER A J, NECOLA A, REES M, et al. The influence of silicate-based nano-filler on the fracture toughness of epoxy resin[J]. Engineering Fracture Mechanics,2006,73(16):2336-2345. doi: 10.1016/j.engfracmech.2006.05.004
    [8] MOURITZ A P. Review of z-pinned composite laminates[J]. Composites Part A,2007,38(12):2383-2397. doi: 10.1016/j.compositesa.2007.08.016
    [9] YANG Y, GUPTA M C, DUDLEY K L, et al. Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding.[J]. Nano Letters,2005,5(11):2131-2134. doi: 10.1021/nl051375r
    [10] GUO M C, YI X S. The production of tough, electrically conductive carbon fiber composite laminates for use in airframes[J]. Carbon,2013,58:241-244. doi: 10.1016/j.carbon.2013.02.052
    [11] TANG H, CHEN X F, TANG A Q, et al. Studies on the electrical conductivity of carbon black filled polymers[J]. Journal of Applied Polymer Science,1996,59(3):383-387. doi: 10.1002/(SICI)1097-4628(19960118)59:3<383::AID-APP1>3.0.CO;2-L
    [12] BAUHOFER W, KOVACS J Z. A review and analysis of electrical percolation in carbon nanotube polymer composites[J]. Composites Science and Technology,2009,69(10):1486-1498. doi: 10.1016/j.compscitech.2008.06.018
    [13] VICULIS L M, MACK J J, MAYER O M, et al. Intercalation and exfoliation routes to graphite nanoplatelets[J]. Journal of Materials Chemistry,2005,15(9):974-978. doi: 10.1039/b413029d
    [14] 周浪, 王涛. 石墨烯/功能聚合物复合材料[J]. 复合材料学报, 2020, 37(5):997-1014.

    ZHOU Lang, WANG Tao. Graphene/functional polymer composites[J]. Acta Materiae Compositae Sinica,2020,37(5):997-1014(in Chinese).
    [15] FORSTER R J, KEANE L. Nanoparticle-metallopolymer assemblies: Charge percolation and redox properties[J]. Journal of Electroanalytical Chemistry,2003,554:345-354.
    [16] LONJON A, LAFFONT L, DEMONT P, et al. New highly conductive nickel nanowire-filled P(VDF-TrFE) copolymer nanocomposites: elaboration and structural study[J]. Journal of Physical Chemistry C,2009,113(28):12002-12006. doi: 10.1021/jp901563w
    [17] LI W, XIANG D, WANG L, et al. Simultaneous enhancement of electrical conductivity and interlaminar fracture toughness of carbon fiber/epoxy composites using plasma-treated conductive thermoplastic film interleaves [J]. RSC Advances, 2018, 8(47): 26910-26921.
    [18] ZHAO X, ZHANG Q, CHEN D, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) compo-sites[J]. Macromolecules,2011,44:2392. doi: 10.1021/ma200335d
    [19] 李娜, 李晓屿, 刘丽, 等. 电泳沉积氧化石墨烯的碳纤维表面改性及其增强环氧树脂复合材料界面性能[J]. 复合材料学报, 2020, 37(7):1571-1580.

    LI Na, LI Xiaoyu, LIU Li, et al. Surface modification of carbon fiber (CF) deposited graphene oxide (GO) by electrophorestic deposition and interfacial properties of GO-CF/epoxy composites[J]. Acta Materiae Compositae Sinica,2020,37(7):1571-1580(in Chinese).
    [20] ZHOU T, ZHA J W, HOU Y, et al. Surface-functionalized MWNTs with emeraldine base: preparation and improving dielectric properties of polymer nanocomposites[J]. ACS Applied Materials & Interfaces,2011,3(12):4557-4560.
    [21] YANG S Y, LIN W N, HUANG Y L, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites[J]. Carbon,2011,49(3):793-803. doi: 10.1016/j.carbon.2010.10.014
    [22] QIN W Z, VAUTARD F, DRZAL L T, et al. Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber-matrix interphase[J]. Composites Part B,2015,69:335-341. doi: 10.1016/j.compositesb.2014.10.014
    [23] AL-SALEH M H, SUNDARARAJ U. A review of vapor grown carbon nanofiber/polymer conductive composites[J]. Carbon,2009,47(1):2-22. doi: 10.1016/j.carbon.2008.09.039
    [24] LI W, DICHIARA A, BAI J. Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites[J]. Composites Science and Technology,2013,74:221-227. doi: 10.1016/j.compscitech.2012.11.015
    [25] SAFDARI M, AL-HAIK M S. Synergistic electrical and thermal transport properties of hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets[J]. Carbon,2013,64(Complete):111-121.
    [26] LIN Y. Functionalized interleaf technology in carbon-fibre-reinforced composites for aircraft applications[J]. National Science Review,2013,1(1):7-8.
    [27] GUO M C, YI X S, RUDD C, et al. Preparation of highly electrically conductive carbon-fiber composites with high interlaminar fracture toughness by using silver-plated interleaves[J]. Composites Science and Technology,2019,176(MAY 26):29-36.
    [28] MANDAL S, ALAM S. Studies on the mechanical, thermal, and morphological properties of poly(ether ether ketone)/poly(ether sulfone)/barium titanate nanocomposites: Correlation of experimental results with theoretical predictive models[J]. Journal of Applied Polymer Science,2012,126(2):724-733. doi: 10.1002/app.36735
    [29] 申维新, 姜云龙, 朱爱萍. 聚醚砜对连续碳纤维/聚醚醚酮复合材料性能的影响[J]. 复合材料学报, 2021, 38(6):1809-1816.

    SHEN Weixin, JIANG Yunlong, ZHU Aiping. Effect of polyethersulfone on the properties of continuous carbon fiber/polyetheretherketone composites[J]. Acta Materiae Compositae Sinica,2021,38(6):1809-1816(in Chinese).
    [30] ZHOU J L, CHENG C, JIANG M Q, et al. Polyethersulfone melt-spun fibers plasticized with epoxy oligomer[J]. Materials Letters,2018,210:263-266. doi: 10.1016/j.matlet.2017.09.035
    [31] ZHENG W J, YAO Z J, LIN H Y, et al. Improved fracture toughness of carbon fiber fabric/epoxy composite laminates using polyether sulfone fibers[J]. High Performance Polymers,2019,31(8):996-1005. doi: 10.1177/0954008318812151
    [32] RAJASEKARAN R, ALAGAR M, CHOZHAN C K. Effect of polyethersulfone and N, N′-bismaleimido-4, 4′-diphenyl methane on the mechanical and thermal properties of epoxy systems[J]. Express Polymer Letters,2008,2(5):339-348. doi: 10.3144/expresspolymlett.2008.40
    [33] LEE S, JEONG E, LEE M Y, et al. Improvement of the mechanical and thermal properties of polyethersulfone-modified epoxy composites[J]. Journal of Industrial and Engineering Chemistry,2016,33:73-79. doi: 10.1016/j.jiec.2015.09.022
    [34] CHENG C, CHEN Z G, HUANG Z, et al. Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned PES fiber webs[J]. Composites Part A,2020:129.
    [35] ASTM. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528-2013[S]. West conshohocken: ASTM, 2013.
    [36] ASTM. Standard test method for determination of the Mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905/D7905M[S]. West conshohocken: ASTM, 2014.
    [37] YU A P, RAMESH P, SUN X B, et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J]. Advanced Materials,2008,20(24):4740-4744. doi: 10.1002/adma.200800401
    [38] WEN B, CAO M S, LU M M, et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures[J]. Advanced Materials,2014,26(21):3357. doi: 10.1002/adma.201470138
    [39] WANG X X, CAO W Q, CAO M S, et al. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices[J]. Advanced Materials,2020,32(36):2002112.
    [40] WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon,2013,65:124-139. doi: 10.1016/j.carbon.2013.07.110
    [41] ZHANG C, HUANG S, TJIU W W, et al. Facile preparation of water-dispersible graphene sheets stabilized by acid-treated multiwalled carbon nanotubes and their poly(vinyl alcohol) composites[J]. Journal of Materials Chemistry,2012,22:2427-2434. doi: 10.1039/C1JM13921E
    [42] YANG S Y, LIN W N, HUANG Y L, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites[J]. Carbon,2010,49(3):793-803.
    [43] WONG D W Y, LIN L, MCGRAIL P T, et al. Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres[J]. Composites Part A,2010,41(6):759-767. doi: 10.1016/j.compositesa.2010.02.008
    [44] YUE L, PIRCHERAGHI G, MONERMIAN S A, et al. Epoxy composites with carbon nanotubes and graphene nanoplatelets-dispersion and synergy effects[J]. Carbon,2014,78:268-278. doi: 10.1016/j.carbon.2014.07.003
    [45] LI W, LI Y T, XIANG D, et al. Simultaneous enhancement of electrical conductivity and interlaminar shear strength of CF /EP composites through MWCNTs doped thermoplastic polyurethane film interleaves[J]. Journal of Applied Polymer Science,2019,136(39):47988. doi: 10.1002/app.47988
    [46] DU X S, ZHOU H L Z, SUN W F, et al. Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates[J]. Composites Science and Technology,2017,140:123-133. doi: 10.1016/j.compscitech.2016.12.028
    [47] KING J A, BARTON R L, HAUSER R A, et al. Synergistic effects of carbon fillers in electrically and thermally conductive liquid crystal polymer based resins[J]. Polymer Composites,2008,29(4):421-428. doi: 10.1002/pc.20446
    [48] ZHANG X, ALLOUL O, HE Q L, et al. Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets[J]. Polymer,2013,54(14):3594-3604. doi: 10.1016/j.polymer.2013.04.062
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  835
  • HTML全文浏览量:  403
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 修回日期:  2021-03-09
  • 录用日期:  2021-03-21
  • 网络出版日期:  2021-04-07
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回