留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

细菌纤维素及其复合材料在环境领域应用的研究进展

张艳 孙怡然 于飞 马杰

张艳, 孙怡然, 于飞, 等. 细菌纤维素及其复合材料在环境领域应用的研究进展[J]. 复合材料学报, 2021, 38(8): 2418-2427. doi: 10.13801/j.cnki.fhclxb.20210402.002
引用本文: 张艳, 孙怡然, 于飞, 等. 细菌纤维素及其复合材料在环境领域应用的研究进展[J]. 复合材料学报, 2021, 38(8): 2418-2427. doi: 10.13801/j.cnki.fhclxb.20210402.002
ZHANG Yan, SUN Yiran, YU Fei, et al. Research progress on the application of bacterial cellulose and its composites in environmental field[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2418-2427. doi: 10.13801/j.cnki.fhclxb.20210402.002
Citation: ZHANG Yan, SUN Yiran, YU Fei, et al. Research progress on the application of bacterial cellulose and its composites in environmental field[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2418-2427. doi: 10.13801/j.cnki.fhclxb.20210402.002

细菌纤维素及其复合材料在环境领域应用的研究进展

doi: 10.13801/j.cnki.fhclxb.20210402.002
基金项目: 国家自然科学基金 (21777118)
详细信息
    通讯作者:

    孙怡然,博士,研究方向为环境功能材料开发及应用 Email:1531402@tongji.edu.cn

    马杰,博士,教授,博士生导师,研究方向为电化学水处理技术 E-mail:jma@tongji.edu.cn

  • 中图分类号: TQ352.4; Q815

Research progress on the application of bacterial cellulose and its composites in environmental field

  • 摘要: 细菌纤维素(Bacterial cellulose, BC)是一种由微生物发酵产生的细胞外多糖,作为一种新型的环境友好生物材料,细菌纤维素具有高纯度、高吸水性,优异的机械强度及生物相容性高等优点,在生物医学、化工及食品等诸多领域展现出广阔的应用前景。本文系统性地介绍了BC的结构和特性,对BC的制备工艺和影响因素进行了总结,并分析了化学改性、原位改性和纳米材料复合改性等改性方法对BC的结构与特性的影响,对BC在环境处理技术(吸附、过滤、光催化)中的应用进展进行了概述,最后对BC的研究进展及其发展方向进行了总结和展望。

     

  • 图  1  细菌纤维素(BC)可持续生命周期[2]

    Figure  1.  Bacterial cellulose (BC) sustainable life cycle[2]

    图  2  Web of Science数据库2008~2020年收录的BC相关文献数量分析

    Figure  2.  Analysis of BC publications in Web of Science database during 2008-2020

    图  3  BC分子结构[6]

    Figure  3.  BC molecular structure[6]

    图  4  植物纤维素和BC的SEM图像[6]

    Figure  4.  SEM images of plant cellulose and BC[6]

    图  5  BC生物合成过程[14]

    Figure  5.  BC biosynthetic process[14]

    图  6  BC凝胶状液膜[14]

    Figure  6.  BC gel liquid film[14]

    图  7  BC的改性方式[19]

    Figure  7.  BC modification[19]

    图  8  pH对制备的复合水凝胶吸附刚果红(CR)能力的影响 (a)、制备的复合水凝胶在150 mg/L的CR溶液中吸附前后的图片 (b)和水凝胶对CR吸附的可重复使用性 (c)[41]

    Figure  8.  Effect of pH on the congo red (CR) adsorption ability of the prepared hydrogels (a), images of 150 mg/L CR solution before adsorption by the prepared difference hydrogels (b), reusability of the prepared hydrogels (c)[41]

    PVA—Polyvinyl alcohol; GO—Graphene oxide; APT—Attapulgite

    图  9  纯BC气凝胶 (a),BC/壳聚糖(CH)气凝胶 (b),ZIF-67-BC-CH气凝胶 (c) 的照片[42]

    Figure  9.  Photographs of pure BC aerogel (a), BC/chitosan (CH) aerogel (b), ZIF-67-BC-CH aerogel (c)[42]

    图  10  气凝胶对Cu2+/Cr6+的吸附量[42]

    Figure  10.  Aerogel adsorption ability of Cu2+ and Cr6+[42]

    图  11  F-Z5、F-Z10、F-Z15和F-ZS样品对不同粒径污染物的过滤效率[52]

    Figure  11.  Filtration efficiency of F-Z5, F-Z10, F-Z15 and F-ZS[52]

    图  12  BC复合量对膜过滤性能的影响[53]

    Figure  12.  Impact of BC compound amount on filtration[53]

  • [1] LUO H, ZHANG J, XIONG G, et al. Evolution of morphology of bacterial cellulose scaffolds during early culture[J]. Carbohydrate Polymers,2014,111:722-728. doi: 10.1016/j.carbpol.2014.04.097
    [2] WOO D J, JI H H, HYUN U K, et al. Bacterial cellulose as an example product for sustainable production and consumption[J]. Microbial Biotechnology, 2017, 10(5): 1181-1185.
    [3] SELESTINA G. Bacterial cellulose as a versatile platform for research and development of biomedical materials[J]. Processes, 2020, 8(5): 624.
    [4] 税朝毅, 胡秀林, 张维, 等. 复合细菌纤维素材料研究进展[J]. 预防医学论坛, 2020, 26(10):787-792.

    SHUI Z Y, HU X L, ZHANG W, et al. Research progress of bacterial cellulose composite[J]. Chinese Preventive Medicine Association,2020,26(10):787-792(in Chinese).
    [5] BROWN, ADRIAN J. On an acetic ferment which forms cellulose[J]. Journal of the Chemical Society, Transactions,1886,49:432-439. doi: 10.1039/CT8864900432
    [6] 李治明, 荣荣, 尹学琼, 等. 细菌纤维素制备及吸附金属离子的研究进展[J]. 精细化工, 2018, 35(5):721-727.

    LI Z M, RONG R, YIN X Q, et al. Research progress of preparation of bacterial cellulose and its adsorption for metal ions[J]. Fine Chemicals,2018,35(5):721-727(in Chinese).
    [7] 谭玉静. 细菌纤维素的发酵生产及其物理化学性质初探[D]. 上海: 东华大学, 2007.

    TAN Y J. Production of bacterial cellulose and characterization of the cellulose’s physicochemical properties[D]. Shanghai: Donghua University, 2007(in Chinese).
    [8] SULAEVA I, HENNIGES U, ROSENAU T, et al. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review-science direct[J]. Biotechnology Advances,2015,33(8):1547-1571. doi: 10.1016/j.biotechadv.2015.07.009
    [9] 刘晖. 细菌纤维素基复合材料的制备及性能研究[D]. 南京: 南京林业大学, 2016.

    LIU H. Study on the preparation and properties of bacterial cellulose-based composites[D]. Nanjing: Nanjing Forestry University, 2016(in Chinese).
    [10] HYOK K M, HAN G A. Development of artificial blood vessel using bacterial cellulose[J]. Journal of Pediatrics, 2010, 4(1): 1-66.
    [11] 汤卫华, 贾士儒, 贾原媛, 等. 纳米生物材料细菌纤维素在医学领域的应用研究[J]. 生物医学工程学杂志, 2014, 31(4):927-929. doi: 10.7507/1001-5515.20140174

    TANG W H, JIA S R, JIA Y Y, et al. Research on medical application of bacterial cellulose as Nano-biomaterials[J]. Journal of Biomedical Engineering,2014,31(4):927-929(in Chinese). doi: 10.7507/1001-5515.20140174
    [12] SHLOMO, HESTRIN M, ASCHNER J, et al. Synthesis of cellulose by resting cells of acetobacter xylinum[J]. Nature,1947,159:64-65. doi: 10.1038/159064a0
    [13] JONAS R, FARAH L F. Production and application of microbial cellulose[J]. Polymer Degradation and Stability, 1998, 59(1): 101-106.
    [14] WANG S, LI T, CHEN C J, et al. Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers[J]. Advanced Functional Materials,2018,28(24):1707491.
    [15] SCHRAMM M, HESTRIN S. Factors affecting production of cellulose at the air/liquid interface of a culture of acetobacter xylinum[J]. Journal of General Microbiology,1954,11(1):123-129. doi: 10.1099/00221287-11-1-123
    [16] MELIH G, AKPNAR Z. Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016[J]. International Journal of Biological Macromolecules,2020,162:1597-1604. doi: 10.1016/j.ijbiomac.2020.08.049
    [17] 杨光, 王彩霞. 以腐烂水果为营养源高效制备细菌纤维素[J]. 纤维素科学与技术, 2015, 23(4):67-70.

    YANG G, WANG C X. Cost-efficient production of bacterial cellulose by Gluconacetobacter xylinus using rotten fruits as the culture medium[J]. Journal of Cellulose Science and Technology,2015,23(4):67-70(in Chinese).
    [18] IRINA S, UTE H, THOMAS R, et al. Bacterial cellulose as a material for wound treatment: Properties and modifications[J]. A review,2015,33(8):1547-1571.
    [19] 黄小桂. 细菌纤维素的改性及其对废水的吸附行为研究[D]. 福州: 福州大学, 2017.

    HUANG X G. Modification and adsorption behavior of bacterial cellulose for wastewater[D]. Fuzhou: Fuzhou University, 2017(in Chinese).
    [20] 赵倩倩. 肠杆菌(Enterobacter sp.)FY-07发酵产细菌纤维素的原位改性研究[D]. 天津: 南开大学, 2014.

    ZHAO Q Q. Study on in situ modifaction of bacterial cellulose produced by Enterobacter sp. FY-07[D]. Tianjin: Nankai University, 2014(in Chinese).
    [21] 钱子俊, 张一瞳, 刘鹏, 等. 不同添加剂对木醋杆菌发酵细菌纤维素的影响[J]. 林业工程学报, 2018, 3(4):62-67.

    QIAN Z J, ZHANG Y T, LIU P, et al. Effects of different additives on bacterial cellulose production by Gluconacetobacter xylinum[J]. Journal of Forestry Engineering,2018,3(4):62-67(in Chinese).
    [22] 张雯, 赵秋红, 李彦军. 醋酸杆菌发酵细菌纤维素及其改性研究[J]. 食品工业科技, 2013, 34(17):181-184.

    ZHANG W, ZHAO Q H, LI Y J. Study on fermentation of bacterial cellulose by acetobacter xylinum and its modification[J]. Science and Technology and Food Industry,2013,34(17):181-184(in Chinese).
    [23] YIN N, DU R, ZHAO F, et al. Characterization of antibacterial bacterial cellulose composite membranes modified with chitosan or chitooligosaccharide[J]. Carbohydrate Polymers,2020,229:115520.
    [24] 朱清梅, 冯玉红, 林强, 等. 利用椰子水生物合成CMC改性细菌纤维素[J]. 精细化工, 2010, 27(7):654-658.

    ZHU Q M, FENG Y H, LIN Q, et al. Biosynthesis of CMC-Bacterial cellulose with coconut-water[J]. Fine Chemicals,2010,27(7):654-658(in Chinese).
    [25] 李玉洁, 冯玉红, 张名楠, 等. 原位生物合成中甘油醛改性细菌纤维素的研究[J]. 材料导报, 2016, 30(8):46-50.

    LI Y J, FENG Y H, ZHANG M N, et al. The in-situ biosynthesis of bacterial cellulose moidfied by glyceraldehyde[J]. Material Reports,2016,30(8):46-50(in Chinese).
    [26] 张晶. 细菌纤维素组织工程支架材料的复合改性与性能研究[D]. 天津: 天津大学, 2014.

    ZHANG J. Modification and properties of bacterial cellulose tissue engineering scaffolds[D]. Tianjin: Tianjin University, 2014(in Chinese).
    [27] 谢健健. 载纳米银细菌纤维素抗菌材料的制备及其评价[D]. 上海: 东华大学, 2012.

    XIE J J. Preparation and evaluation of antibacterial bacterial cellulose membranes impregnated silver nanoparticles[D]. Shanghai: Donghua University, 2012(in Chinese).
    [28] TRONCOSO O P, TORRES F G. Bacterial cellulose-graphene based nanocomposites[J]. International Journal of Molecular Sciences,2020,21(18):6532. doi: 10.3390/ijms21186532
    [29] YAN Z Y, CHEN S Y, WANG H P, et al. Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture[J]. Carbohydrate Polymers, 2008, 74(3): 659-665.
    [30] 汤莹. 纤维素化学改性研究进展与展望[J]. 科学与信息化, 2017(29): 63-65.

    TANG Y. Research progress and prospect of cellulose chemical modification[J]. Technology and Information, 2017(29): 63-65(in Chinese).
    [31] ALBERTO E L, OCAMPO A, DEPASUPIL C G, et al. Acetylation of Nata de coco (bacterial cellulose) and membrane formation[J]. MATEC Web of Conferences, 2019, 268(2): 04003.
    [32] 王曼, 张坤, 翟晓利, 等. 细菌纤维素和TEMPO氧化细菌纤维素对Fe(Ⅱ)的吸附[J]. 离子交换与吸附, 2016, 32(3):234-243.

    WANG M, ZHANG K, ZHAI X L, et al. Adsorption of Fe(Ⅱ) with bacterial cellulose and TEMPO-oxidized bacterial cellulose[J]. Ion Exchange and Adsorption,2016,32(3):234-243(in Chinese).
    [33] WAN N W S, ENDUD C S, MAYANAR R. Removal of copper(Ⅱ) ions from aqueous solution onto chitosan and cross-linked chitosan beads[J]. Reactive and Functional Polymers,2002,50(2):181-190. doi: 10.1016/S1381-5148(01)00113-4
    [34] 鲁敏. 细菌纤维素的制备及其对重金属离子的吸附性能研究[D]. 沈阳: 东北大学, 2012.

    LU M. Preparation of bacterial cellulose and its adsorption propertiese to heavy metal ions[D]. Shenyang: Northeastern University, 2012(in Chinese).
    [35] CHEN S Y, SHEN W, YU F, et al. Preparation of amidoximated bacterial cellulose and its adsorption mechanism for Cu2+ and Pb2+[J].Journal of Applied Polymer Science, 2010, 117(1): 8-15.
    [36] HASINEA K, SAADET Ö, MURAT O. Modified polyacrylamide hydrogels and their application in removal of heavy metal ions[J]. Polymer, 2003, 44(6): 1785-1793.
    [37] ZHENG Y, WANG A Q. Granular hydrogel initiated by Fenton reagent and their performance on Cu(Ⅱ) and Ni(Ⅱ) removal[J]. Chemical Engineering Journal, 2012, 200-202: 601-610.
    [38] 李雅茹. PAA/纤维素复合水凝胶的制备及性能研究[D]. 天津: 天津科技大学, 2015.

    LI Y R. Study on the preparation and properties of PAA/cellulose composite hydrogels[D]. Tianjin: Tianjin University of Science & Technology, 2015(in Chinese).
    [39] 王静, 王清清, 魏取福, 等. PVA-SbQ/细菌纤维素复合气凝胶的制备及吸油性能研究[J]. 功能料, 2016, 47(3):3007-3010.

    WANG J, WANG Q Q, WEI Q F, et al. Study on the preparation and oil absorption of PVA-SbQ/BC composite aerogels[J]. Journal of Functional Materials,2016,47(3):3007-3010(in Chinese).
    [40] POURJAVADI A, NAZARI M, KABIRI B, et al. Preparation of porous graphene oxide/hydrogel nanocomposites and their ability for efficient adsorption of methylene blue[J]. RSC Advances,2016,6(13):10430-10437.
    [41] 焦彩珍, 丁玲, 陈鑫, 等. 增强型细菌纤维素/聚乙烯醇水凝胶的制备研究[J]. 高分子通报, 2019(2):63-74.

    JIAO C Z, DING L, CHEN X, et al. Studies on preparaiton of enhanced bacterial cellulose/polyvinyl alcohol hydrogels[J]. Polymer Bulletin,2019(2):63-74(in Chinese).
    [42] LI D W, TIAN X J, WANG Z Q, et al. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant[J]. Chemical Engineering Journal, 2020, 383: 123127.
    [43] HE J, ZHAO H Y, LI X L, et al. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery[J]. Journal of Hazardous Materials,2018,346:199-207.
    [44] 何旭敏, 何国梅, 曾碧榕, 等. 膜分离技术的应用[J]. 厦门大学学报(自然科学版), 2001, 40(2):495-502.

    HE X M, HE G M, ZENG B R, et al. Application of membrane-separation technology[J]. Journal of Xiamen University(Natural Science),2001,40(2):495-502(in Chinese).
    [45] 董丽攀, 李政, 王福迎, 等. 细菌纤维素@聚吡咯-单壁碳纳米管导电膜的制备与表征[J]. 复合材料学报, 2019, 36(3):723-729.

    DONG L P, LI Z, WANG F Y, et al. Preparation and characterization of bacterial cellulose@polypyrrole-single wall carbon nanotube conductive films[J]. Acta Materiae Compositae Sinica,2019,36(3):723-729(in Chinese).
    [46] LIU X B, HAMID S, ZHENG Y D, et al. Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration[J]. Composites Science and Technology,2017,138:124-133.
    [47] 胡婷婷, 贾庆明, 陕绍云. 纤维素基面膜材料的应用进展[J]. 纤维素科学与技术, 2018, 26(4):60-67.

    HU T T, JIA Q M, SHAN S Y. Progress in application of cellulose-based materials as facial mask[J]. Journal of Cellulose Science and Technology,2018,26(4):60-67(in Chinese).
    [48] 张蒙. 细菌纤维素/二醋酸纤维复合滤料制备及性能研究[D]. 无锡: 江南大学, 2019.

    ZHANG M. Preparation and properties of bacterial cellulose/cellulose diacetate composite filter material[D]. Wuxi: Jiangnan University, 2019(in Chinese).
    [49] ZHANG S, SHIM W S, KIM J. Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficicency[J]. Materials Design,2009,30(9):3659. doi: 10.1016/j.matdes.2009.02.017
    [50] LIU C, HSU P C, LEE H W, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications, 2015, 6: 6205.
    [51] 贺玮, 刘晓彤, 郑裕东, 等. 用于空气过滤的改性大豆蛋白-细菌纤维素复合材料的制备及性能[J]. 复合材料学报, 2021, 38(3): 843-853.

    HE W, LIU X T, ZHENG Y D, et al. Preparation and properties of modified soy protein-bacterial cellulose composite materials for air filtration[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 843-853(in Chinese).
    [52] 范鑫. 橘渣细菌纤维素的制备及空气净化膜的构建与性能研究[D]. 武汉: 华中农业大学, 2019.

    FAN X. Preparation of citrus peel and pomace bacterial cellulose and fabrication and filtration of air filters[D]. Wuhan: Huazhong Agricultural University, 2019(in Chinese).
    [53] 宋冰, 石勇, 陆海龙, 等. 细菌纤维素纸质复合微滤膜的开发[J]. 中国造纸学报, 2015, 30(4):32-37. doi: 10.11981/j.issn.1000-6842.2015.04.32

    SONG B, SHI Y, LU H L, et al. Preparation and characteristics of a paper-based bacterial cellulose microfiltration membrane[J]. Transactions of China Pulp and Paper,2015,30(4):32-37(in Chinese). doi: 10.11981/j.issn.1000-6842.2015.04.32
    [54] 高春涛, 蔡以兵, 王清清, 等. TiO2纳米纤维的制备及其对染料的光催化降解性能[J]. 功能材料, 2013, 44(2):240-243, 248. doi: 10.3969/j.issn.1001-9731.2013.02.020

    GAO C T, CAI Y B, WANG Q Q, et al. Preparation and photocatalytic degreadation properties on dyes of TiO2 nanofibers[J]. Journal of Functional Materials,2013,44(2):240-243, 248(in Chinese). doi: 10.3969/j.issn.1001-9731.2013.02.020
    [55] 蒋国民, 魏静, 晁成, 等. 细菌纤维素负载TiO2用于DDNP废水光催化降解研究[J]. 功能材料, 2015, 46(2):2023-2027. doi: 10.3969/j.issn.1001-9731.2015.02.005

    JIANG G M, WEI J, CHAO C, et al. Study of biotemplated preparation of TiO2 nanoparticles/bacterial cellulose hybrid nanofiber for degradation of DDNP wastewater[J]. Journal of Functional Materials,2015,46(2):2023-2027(in Chinese). doi: 10.3969/j.issn.1001-9731.2015.02.005
    [56] DAI B B, CHAO C, LU X Y, et al. Preparation of ZnO/CdS/BC photocatalyst hybrid fiber and research of its photocatalytic properties[J]. Journal of Nanotechnology,2015,2015:1-8.
  • 加载中
图(12)
计量
  • 文章访问数:  1912
  • HTML全文浏览量:  1625
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-26
  • 录用日期:  2021-03-24
  • 网络出版日期:  2021-04-06
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回