留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维石墨烯-碳纳米管/水泥净浆的压敏性能

刘金涛 黄存旺 杨杨 蔡倩妮

刘金涛, 黄存旺, 杨杨, 等. 三维石墨烯-碳纳米管/水泥净浆的压敏性能[J]. 复合材料学报, 2022, 39(1): 313-321. doi: 10.13801/j.cnki.fhclxb.20210331.001
引用本文: 刘金涛, 黄存旺, 杨杨, 等. 三维石墨烯-碳纳米管/水泥净浆的压敏性能[J]. 复合材料学报, 2022, 39(1): 313-321. doi: 10.13801/j.cnki.fhclxb.20210331.001
LIU Jintao, HUANG Cunwang, YANG Yang, et al. Piezoresistivity of three dimensional graphene-carbon nanotubes/cement paste[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 313-321. doi: 10.13801/j.cnki.fhclxb.20210331.001
Citation: LIU Jintao, HUANG Cunwang, YANG Yang, et al. Piezoresistivity of three dimensional graphene-carbon nanotubes/cement paste[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 313-321. doi: 10.13801/j.cnki.fhclxb.20210331.001

三维石墨烯-碳纳米管/水泥净浆的压敏性能

doi: 10.13801/j.cnki.fhclxb.20210331.001
基金项目: 浙江省自然科学基金 (LY21E080016);浙江省重点研发计划项目(2021C01060)
详细信息
    通讯作者:

    杨杨,工学博士,教授,博士生导师,研究方向为高性能混凝土材料 E-mail:yangyang@zjut.edu.cn

  • 中图分类号: TQ172.1; TB332

Piezoresistivity of three dimensional graphene-carbon nanotubes/cement paste

  • 摘要: 为了探索三维石墨烯-碳纳米管(G-CNTs)/水泥净浆的压敏性能,采用四电极法研究了荷载作用下G-CNTs/水泥净浆的电阻率变化,并分析不同G-CNTs掺量、加载幅度、加载速度以及恒定荷载对电阻率变化的影响。研究表明:随着G-CNTs掺量的增加,电阻率呈先减小后稳定的变化趋势,在G-CNTs掺量由0.2wt%增加至1.6wt%时,电阻率下降51.8%;电阻率与温度呈负相关;G-CNTs掺量高于0.8wt%时可以显著提高水泥净浆的压敏性能,且电阻率变化率与应力应变有明显的对应关系,1.2wt%G-CNTs掺量下试件的应力灵敏系数和应变灵敏系数分别为2.3%/MPa和291;G-CNTs/水泥净浆电阻率变化率幅值随着加载幅度增大而相应增加,其电阻率变化率曲线在不同加载速度以及恒定荷载作用下均与应力-应变曲线一一对应,具有良好的压敏特性。

     

  • 图  1  三维石墨烯-碳纳米管微观形貌及其粒径分布

    Figure  1.  Microstructure and particle size distribution of 3D graphene/carbon nanotubes

    图  2  试件压敏性能测试

    Figure  2.  Piezoresistivity test for specimens

    图  3  三维石墨烯-碳纳米管/水泥净浆电阻率随G-CNTs掺量的变化关系

    Figure  3.  Relationship between the resistivity of three dimensional graphene-carbon nanotubes/cement paste and G-CNTs content

    图  4  三维石墨烯-碳纳米管/水泥净浆复合材料电阻率随温度的变化关系

    Figure  4.  Relationship between the resistivity of three dimensional graphene-carbon nanotubes/cement slurry composites and the temperature

    图  5  三维石墨烯-碳纳米管/水泥净浆复合材料电阻率变化率与应力-应变关系

    Figure  5.  Relationship between the resistivity change rate of three-dimensional graphene-carbon nanotubes/cement slurry composites and stress-strain

    图  6  各组三维石墨烯-碳纳米管/水泥净浆复合材料应力-应变灵敏系数

    Figure  6.  Stress-strain sensitivity coefficients of each group of three-dimensional graphene-carbon nanotubes/cement slurry composites

    图  7  不同加载幅值下三维石墨烯-碳纳米管/水泥净浆复合材料的电阻率变化率与应力-应变关系

    Figure  7.  Relationship between the resistivity change rate of three-dimensional graphene-carbon nanotubes/cement slurry composites and stress-strain under different loading amplitudes

    图  8  不同加载幅值下各组三维石墨烯-碳纳米管/水泥净浆复合材料的电阻率变化率值

    Figure  8.  Resistivity change rate of each group of three-dimensional graphene-carbon nanotubes/cement slurry composites under different loading amplitudes

    图  9  不同加载速率下三维石墨烯-碳纳米管/水泥净浆复合材料的电阻率变化率与应力-应变关系

    Figure  9.  Relationship between the resistivity change rate of three-dimensional graphene-carbon nanotubes/cement slurry composites and stress-strain under different loading speeds

    图  10  恒载下1.2wt%G-CNTs/C电阻率变化率与应力-应变关系

    Figure  10.  Relationship between the resistivity change rate of 1.2wt%G-CNTs/C and stress-strain under constant load

    表  1  三维石墨烯-碳纳米管(G-CNTs)的性能参数

    Table  1.   Properties of three dimensional graphene-carbon nanotubes (G-CNTs)

    PurityLayerMedian grain diameter/μmSpecific surface area /(m2·g−1)CNTs’ diameter/nmVolume mean particle size/μm
    >90% < 30 3-6 6.23 50-80 6.307
    下载: 导出CSV

    表  2  G-CNTs/水泥净浆配合比

    Table  2.   Mixture proportions of G-CNTs/cement slurry

    GroupCement/gSurfactant/gG-CNTs/gG-CNTs/wt%Water/gWater reducer/g
    R 1500 4 0 0 600 0
    0.2wt%G-CNTs/C 1500 4 3 0.2 600 0.10
    0.4wt%G-CNTs/C 1500 4 6 0.4 600 0.13
    0.8wt%G-CNTs/C 1500 4 12 0.8 600 0.16
    1.2wt%G-CNTs/C 1500 4 18 1.2 600 0.18
    1.6wt%G-CNTs/C 1500 4 24 1.6 600 0.50
    2.0wt%G-CNTs/C 1500 4 30 2.0 600 0.84
    2.4wt%G-CNTs/C 1500 4 36 2.4 600 1.50
    Note:R—Group of undoped cement slurry
    下载: 导出CSV

    表  3  不同导电相复合水泥基材料灵敏系数

    Table  3.   Sensitivity coefficients of cement-based materials reinforced with different conducting materials

    Ref.MaterialContentStrain sensitivity
    factor/(%·MPa−1)
    Stress sensitivity
    factor
    This study G-CNTs 1.2wt% 2.30 291
    Han et al.[8] Carbon fiber 1.35 227
    Zhai et al. [30] GO 2.0wt% 1.28 147.8
    Sun et al. [31] Graphene 5.0vol% 0.78 156
    Luo et al. [32] MWCNT 1.0wt% 1.47 132
    Yu et al. [33] MWCNT 0.1wt% 1.33
    Liu et al. [18] Graphene 0.15vol% 37.78
    下载: 导出CSV
  • [1] LIU Jintao, FU Jiali, YANG Yang, et al. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets[J]. Construction and Building Materials,2019,199:1-11. doi: 10.1016/j.conbuildmat.2018.12.006
    [2] XIE Ping, GU Ping, BEAUDOIN J J. Electrical percolation phenomena in cement composites containing conductive fibres[J]. Journal of Materials Science,1996,31(15):4093-4097. doi: 10.1007/BF00352673
    [3] 施 韬, 朱 敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展[J]. 复合材料学报, 2018, 35(5):1033-1049.

    SHI Tao, ZHU Min, LI Zexin, et al. Research progress of carbon nanotubes modified cement-based composites[J]. Acta Materiae Compositae Sinica,2018,35(5):1033-1049(in Chinese).
    [4] CHIARELLO Manuela, ZINNO Raffaele. Electrical conductivity of self-monitoring CFRC[J]. Cement & Concrete Composites,2005,27(4):463-469.
    [5] LIU Xiaoming, WU Shaopeng. Study on the graphite and carbon fiber modified asphalt concrete[J]. Construction & Building Materials,2011,25:1807-1811.
    [6] TIAN Zhuang, LI Yancheng, ZHENG Jiajia, et al. A state-of-the-art on self-sensing concrete: Materials, fabrication and properties[J]. Composites Part B: Engineering,2019,177:1-17.
    [7] 范晓明, 董 旭, 孙明清, 等. 掺CCCW的碳纤维石墨水泥基复合材料的导电及压阻特性[J]. 复合材料学报, 2009, 26(6):138-142. doi: 10.3321/j.issn:1000-3851.2009.06.023

    FAN Xiaoming, DONG Xu, SUN Mingqing, et al. Conducti-vity and piezoresistive properties of carbon fiber graphite cement matrix composites doped with CCCW[J]. Acta Materiae Compositae Sinica,2009,26(6):138-142(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.06.023
    [8] HAN Baoguo, OU Jinping. Embedded piezoresistive cement-based stress/strain sensor[J]. Sensors and Actuators A: Physical,2007,138(2):294-298. doi: 10.1016/j.sna.2007.05.011
    [9] LI Hui, XIAO Huigang, OU Jinping. Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites[J]. Cement and Concrete Composites,2006,28(9):824-828. doi: 10.1016/j.cemconcomp.2006.05.004
    [10] MONTEIRO A O, CACHIM P B, COSTA P M F J. Self-sensing piezoresistive cement composite loaded with carbon black particles[J]. Cement and Concrete Composites,2017,81:59-65. doi: 10.1016/j.cemconcomp.2017.04.009
    [11] KATSNELSON M I. Graphene: carbon in two dimensions[J]. Materials Today,2007,10(1-2):20-27. doi: 10.1016/S1369-7021(06)71788-6
    [12] E SILVA R A, DE CASTRO G P, DA LUZ M S, et al. Enhanced properties of cement mortars with multilayer graphene nanoparticles[J]. Construction and Building Materials,2017,149:378-385. doi: 10.1016/j.conbuildmat.2017.05.146
    [13] SUN Mingqing, LIU Qingping, LI Zhouqiu, et al. A study of piezoelectric properties of carbon fiber reinforced concrete and plain cement paste during dynamic loading[J]. Cement & Concrete Research,2000,30(10):1593-1595.
    [14] AZHARI Faezeh, BANTHIA Nemkuamr. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing[J]. Cement and Concrete Compo-sites,2012,34(7):866-873. doi: 10.1016/j.cemconcomp.2012.04.007
    [15] 疏金成, 曹茂盛. 石墨烯基电磁功能材料[J]. 表面技术, 2020, 49(2):40-51.

    SHU Jincheng, CAO Maosheng. Graphene-based electromagnetic functional materials[J]. Surface Technology,2020,49(2):40-51(in Chinese).
    [16] 赵冬梅, 李振伟, 刘领弟, 等. 石墨烯/碳纳米管复合材料的制备及应用进展[J]. 化学学报, 2014, 72(2):185-200.

    ZHAO Dongmei, LI Zhenwei, LIU Lingdi, et al. Progress of preparation and application of graphene/carbon nano-tube composite materials[J]. Acta Chimica Sinica,2014,72(2):185-200(in Chinese).
    [17] 左俊卿, 周 虹, 姚 武, 等. CNT-CF水泥基材料传感特性研究[J]. 材料导报, 2017(22):129-133.

    ZUO Junqing, ZOU Hong, YAO Wu, et al. Study on sensing Properties of CNT-CF Cement-based materials[J]. Materials Reports,2017(22):129-133(in Chinese).
    [18] 刘 衡, 孙明清, 李 俊, 等. 掺纳米石墨烯片的水泥基复合材料的压敏性[J]. 功能材料, 2015, 46(16):78-82.

    LIU Heng, SUN Mingqing, LI Jun, et al. Pressure sensitivity of cement-based composites doped with nanometer graphene sheets[J]. Jorunal of Functional Materials,2015,46(16):78-82(in Chinese).
    [19] 赵 昕, 黄存旺, 傅佳丽, 等. 石墨烯水泥复合材料的电学性能[J]. 建筑材料学报, 2021, 录用.

    ZHAO Xin, HUANG Cunwang, FU Jiali, et al. Electrical properties of graphene cement composites[J]. Journal of Building Materials, 2021, Accepted(in Chinese)
    [20] 狄莹莹, 任鹏刚, 张 倩. 石墨烯-多壁碳纳米管/超高分子量聚乙烯导电复合材料的制备及性能[J]. 复合材料学报, 2012, 29(04):36-41.

    DI Yingying, REN Penggang, ZHANG Qian. Preparation and properties of graphene-multi-wall carbon nanotubes/ultrahigh molecular weight polyethylene conductive composites[J]. Acta Materiae Compositae Sinica,2012,29(04):36-41(in Chinese).
    [21] YANG Peihua, MAI Wenjie. Flexible solid-state electrochemical supercapacitors[J]. Nano Energy,2014,8:274-290. doi: 10.1016/j.nanoen.2014.05.022
    [22] 徐 丽, 毕 辉, 黄富强, 等. 三维石墨烯/碳纳米管复合材料及其超级电容器应用[J]. 功能材料, 2016, 47(z2):112-115.

    XU Li, BI Hui, HUANG Fuqiang, et al. 3D graphene/carbon nanotube composites and their supercapacitor applications[J]. Jorunal of Functional Materials,2016,47(z2):112-115(in Chinese).
    [23] 张 宁, 金 燕, 周玲玲, 等. 基于三元金属催化剂制备碳纳米管/三维石墨烯复合材料及电容性能[J]. 复合材料学报, 2019, 36(3):739-747.

    ZHANG Ning, JIN Yan, ZHOU Lingling, et al. Carbon nanotube/3D graphene composites and their capacitive properties were prepared based on ternary metal catalyst[J]. Acta Materiae Compositae Sinica,2019,36(3):739-747(in Chinese).
    [24] PARVEEN Shama, RANA Sohel, FANGUEIRO Raul. A Review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites[J]. Journal of Nanomaterials,2013,2013:1-19.
    [25] CHEN Bing, LIU Juanyu, WU Keru. Electrical responses of carbon fiber reinforced cementitious composites to monotonic and cyclic loading[J]. Cement and Concrete Research,2005,35(11):2183-2191. doi: 10.1016/j.cemconres.2005.02.004
    [26] HAN Baoguo, DING Siqi, YU Xun. Intrinsic self-sensing concrete and structures: A review[J]. Measurement,2015,59:110-128. doi: 10.1016/j.measurement.2014.09.048
    [27] CAO Maosheng, SONG Weili, HOU Zhiling, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon,2010,48:788-796. doi: 10.1016/j.carbon.2009.10.028
    [28] 唐祖全, 李卓球, 张华. 混凝土路面温度自诊断特性的实验研究[C]. 第十届全国结构工程学术会议, 南京: 2001.

    TANG Zuquan, LI Zhuoqiu, ZHANG Hua. Experimental study on temperature self-diagnosis characteristics of concrete pavement[C]. The 10th National Structural Engineering Academic Conference, Nanjing: 2001(in Chinese).
    [29] 立树旺. 碳纤维改性磷酸镁水泥粘结性和压敏性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    LI Shuwang. Study on interface bonding performance and pressure sensitivity of carbon fiber modified magnesium phosphate cement[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [30] ZHAI Shengtian, PANG Bo, LIU Guojian, et al. Investigation on preparation and multifunctionality of reduced graphene oxide cement mortar[J]. Construction and Building Materials,2021,275:122119. doi: 10.1016/j.conbuildmat.2020.122119
    [31] SUN Shengwei, HAN Baoguo, JIANG Shan, et al. Nano graphite platelets-enabled piezoresistive cementitious composites for structural health monitoring[J]. Construction and Building Materials,2017,136:314-328. doi: 10.1016/j.conbuildmat.2017.01.006
    [32] LUO Jianlin, ZHANG Chunwei, DUAN Zhongdong, et al. Influences of multi-walled carbon nanotube (MCNT) fraction, moisture, stress/strain level on the electrical properties of MCNT cement-based composites[J]. Sensors and Actuators A: Physical,2018,280:413-421. doi: 10.1016/j.sna.2018.08.010
    [33] YU Xun, KWON Eil. A carbon nanotube/cement composite with piezoresistive properties[J]. Smart Materials and Structures,2009,18(5):1-5.
    [34] XU Jinxia, CAO Yalong, JIANG Linhua, et al. Microstructure and pressure-sensitive properties of cement-based composite with Ni nanowires[J]. Construction and Building Materials,2018,159:46-53. doi: 10.1016/j.conbuildmat.2017.10.114
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  668
  • HTML全文浏览量:  321
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-03-14
  • 录用日期:  2021-03-24
  • 网络出版日期:  2021-03-31
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回