留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BiMn共掺Pd修饰GO/MOF-74-Co复合材料设计与电催化氧化乙二醇性能

莫晗 万正睿 钟玉婷 吴祉睿 胡亚兰 刘红英 周立群

莫晗, 万正睿, 钟玉婷, 等. BiMn共掺Pd修饰GO/MOF-74-Co复合材料设计与电催化氧化乙二醇性能[J]. 复合材料学报, 2022, 39(1): 203-212. doi: 10.13801/j.cnki.fhclxb.20210330.004
引用本文: 莫晗, 万正睿, 钟玉婷, 等. BiMn共掺Pd修饰GO/MOF-74-Co复合材料设计与电催化氧化乙二醇性能[J]. 复合材料学报, 2022, 39(1): 203-212. doi: 10.13801/j.cnki.fhclxb.20210330.004
MO Han, WAN Zhengrui, ZHONG Yuting, et al. Design of BiMn-doped Pd modified GO/MOF-74-Co composites for electrocatalytic oxidation of ethylene glycol[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 203-212. doi: 10.13801/j.cnki.fhclxb.20210330.004
Citation: MO Han, WAN Zhengrui, ZHONG Yuting, et al. Design of BiMn-doped Pd modified GO/MOF-74-Co composites for electrocatalytic oxidation of ethylene glycol[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 203-212. doi: 10.13801/j.cnki.fhclxb.20210330.004

BiMn共掺Pd修饰GO/MOF-74-Co复合材料设计与电催化氧化乙二醇性能

doi: 10.13801/j.cnki.fhclxb.20210330.004
基金项目: 有机功能分子合成与应用教育部重点实验室项目(KLSAOFM1913);湖北省大学生创新训练计划项目(S202010512075)
详细信息
    通讯作者:

    刘红英,讲师,研究方向为催化材料 E-mail:liuhy@hubu.edu.cn

    周立群,博士,教授,博士生导师,研究方向为催化材料  E-mail:zlq@hubu.edu.cn

  • 中图分类号: TB331; O643.3

Design of BiMn-doped Pd modified GO/MOF-74-Co composites for electrocatalytic oxidation of ethylene glycol

  • 摘要: 将BiMn共掺Pd的合金纳米粒子成功地修饰到三维棱锥柱状的还原氧化石墨烯(rGO)/金属有机骨架(MOFs)-74-Co上,得到一种新型复合电催化剂PdBiMn@rGO/MOF-74-Co,其中Pd-Bi-Mn的平均粒径约7.8 nm,MOF-74-Co为多孔的面心六角单元结构。该PdBiMn@rGO/MOF-74-Co催化剂在碱性条件下电催化氧化乙二醇(EG)表现出最高的催化活性和耐久性。优异的电催化性能主要归结于Pd-Bi-Mn纳米合金的形成,其具有强的协同效应和较多的反应活性中心,有利于含氧物种的吸附,使其抗毒性和稳定性显著增强;同时载体rGO/MOF-74-Co独特的微结构使催化剂具有优异的电子传递性能和多孔特性。此外,对EG的电催化氧化机制给出了详细分析。这种新型复合材料的设计和杰出的催化性能为直接醇类燃料电池(DAFCs)的开发和应用提供了重要参考。

     

  • 图  1  金属有机骨架(MOFs)-74-Co、氧化石墨烯(GO)/MOF-74-Co和PdBiMn@还原氧化石墨烯(rGO)/MOF-74-Co的FTIR图谱

    Figure  1.  FTIR spectra of metal-organic framework (MOF)-74-Co, graphene oxide (GO)/MOF-74-Co and PdBiMn@reduced graphene oxide (rGO)/MOF-74-Co

    图  2  GO/MOF-74-Co为载体的四种电催化剂(a)以及在四种电催化剂中Pd的特征峰迁移(b)的XRD图谱

    Figure  2.  XRD patterns of GO/MOF-74-Co carrier with four electrocatalysts (a) and migration of characteristic peaks of Pd in four electrocatalysts (b)

    图  3  GO/MOF-74 (a)和PdBiMn@rGO/MOF-74-Co ((b)、(c))的FE-SEM图像及Co、C、O、Mn、Pd、Bi HAAD-SSEM元素映射(d)和EDS元素分布(e)图谱

    Figure  3.  FE-SEM images of GO/MOF-74-Co (a) and PdBiMn@rGO/MOF-74-Co ((b),(c)) and HAAD-SSEM elemental mapping of Co, C, O, Mn, Pd, Bi (d) and statistics of EDS element distribution of PdBiMn@rGO/MOF-74-Co (e)

    图  4  (a) PdBiMn@rGO/MOF-74-Co电催化剂的TEM图像;(b) 相应的粒径分布图

    Figure  4.  (a) Typical TEM image of PdBiMn@rGO/MOF-74-Co electrocatalyst; (b) Corresponding particle size distribution

    图  5  PdBiMn@rGO/MOF-74-Co电催化剂的XPS能谱图

    Figure  5.  XPS spectra of PdBiMn@rGO/MOF-74-Co electrocatalyst

    图  6  GO/MOF-74-Co为载体的四种电催化剂及商业Pd/C电催化剂在乙二醇(EG)溶液中的CV曲线(扫速:50 mV·s−1)

    Figure  6.  CV curves of GO/MOF-74-Co carrier with four electrocatalysts and Pd/C electrocatalysts in ethylene glycol (EG) solution (Scan rate: 50 mV·s−1)

    ECSA—Electrochemical active surface area; Ip,f—Positive peak current density

    图  7  碱性介质中EG的电氧化机制

    Figure  7.  Electrooxidation mechanism of in EG alkaline medium

    图  8  PdBiMn@rGO/MOF-74-Co在1 mol/L KOH和0.5 mol/L EG溶液中不同扫描速率下的循环伏安图(a)和四种不同催化剂的峰值电流密度与扫描速率平方根(V1/2)曲线图(b)

    Figure  8.  Cyclic voltammograms of PdBiMn@rGO/MOF-74-Co in 1 mol/L KOH and 0.5 mol/L EG solution at various scan rates (a) and curves of peak current density of four different catalysts and square root of the scanning rate (V1/2) (b)

    图  9  五种电催化剂在1 mol/L KOH和0.5 mol/L EG溶液中电位为−0.1 V时连续3600 s的计时电流曲线

    Figure  9.  Current-time curves of five electrocatalysts at −0.1 V for continuous 3600 s in 1 mol/L KOH and 0.5 mol/L EG solution

    ICA—Retention current density

    图  10  五种电催化剂对EG电氧化的交流阻抗谱

    Figure  10.  Impedance spectroscopies of EG electrooxidation on five electrocatalysts

    Rct—Charge transfer resistance

  • [1] HU T, WANG Y, XIAO H, et al. Shape-control of super-branched Pd-Cu alloys with enhanced electrocatalytic performance for ethylene glycol oxidation[J]. Chemical Communications,2018,54(95):13363-13366. doi: 10.1039/C8CC06901H
    [2] XIE Y X, CEN S Y, MA Y T, et al. Facile synthesis of platinum-rhodium alloy nanodendrites as an advanced electrocatalyst for ethylene glycol oxidation and hydrogen evolution reactions[J]. Journal of Colloid and Interface Science,2020,579:250-257. doi: 10.1016/j.jcis.2020.06.061
    [3] ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chemical Reviews,2012,112:673-674. doi: 10.1021/cr300014x
    [4] WU H B, LOU X W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges[J]. Science Advances,2017,3(12):928-935.
    [5] STRAUSS I, MUNDSTOCK A, HINRICHS D, et al. On the interaction of guest molecules with Co-MOF-74: A Vis/NIR and Raman approach[J]. Angewandte Chemie International Edition,2018,57(25):7434-7439. doi: 10.1002/anie.201801966
    [6] JIANG H, WANG Q, WANG H. et al. MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3[J]. ACS Applied Materials & Interfaces,2016,8(40):26817-26826.
    [7] FERNANDEZ V, ABDELKADER C K, FERNANDES D M, et al. Noble metal-free MOF-74 derived nanocarbons: insights on metal composition and doping effects on the electrocatalytic activity towards oxygen reactions[J]. ACS Applied Energy Materials,2019,2(3):1854-1867. doi: 10.1021/acsaem.8b02010
    [8] HE Q, JI J, ZHANG Q, et al. PdMn and PdFe nanoparticles over a reduced graphene oxide carrier for methanol electro-oxidation under alkaline conditions[J]. Ionics,2020,26:2421-2433. doi: 10.1007/s11581-019-03343-4
    [9] GEORGAKILAS V, TIWARI J N, KEMP K C, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic and biomedical applications[J]. Chemical Reviews,2016,116(9):5464-5519. doi: 10.1021/acs.chemrev.5b00620
    [10] CAI J, HUANG Y, GUO Y. Bi-modified Pd/C catalyst via irreversible adsorption and its catalytic activity for ethanol oxidation in alkaline medium[J]. Electrochimica Acta,2013,99(6):22-29.
    [11] WAQAS M, LAN J, ZHANG X, et al. Fabrication of non-enzymatic electrochemical glucose sensor based on Pd-Mn alloy nanoparticles supported on reduced graphene oxide[J]. Electroanalysis,2020,32:1-12. doi: 10.1002/elan.201900434
    [12] XU H, YAN B, ZHANG K, et al. Synthesis and characterization of core-shell PdAu convex nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation[J]. Journal of Alloys & Compounds,2017,723:36-42.
    [13] MENG X, GENG D, LIU J, et al. Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition[J]. Nanotechnology,2011,22(16):165602-165612. doi: 10.1088/0957-4484/22/16/165602
    [14] ZHANG S J, LIU L, YANG J Y, et al. Pd-Ru-Bi nanoalloys modified three-dimensional reduced graphene oxide/MOF-199 composites as a highly efficient electrocatalyst for ethylene glycol electrooxidation[J]. Applied Surface Science,2019,492:617-625. doi: 10.1016/j.apsusc.2019.06.228
    [15] ADHIKARI A K, LIN K S. Improving CO2 adsorption capacities and CO2/N2 separation efficiencies of MOF-74 (Ni, Co) by doping palladium-containing activated carbon[J]. Chemical Engineering Journal,2016,284:1348-1360. doi: 10.1016/j.cej.2015.09.086
    [16] LIANG M, HUI H, HSU A, et al. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells[J]. Journal of Power Sources,2013,241:696-702. doi: 10.1016/j.jpowsour.2013.04.051
    [17] SHEN S Y, ZHAO T S, XU J B, et al. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells[J]. Journal of Power Sources,2010,195(4):1001-1006. doi: 10.1016/j.jpowsour.2009.08.079
    [18] NETO A, TUSI M, POLANCO N, et al. PdBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium[J]. International Journal of Hydrogen Energy,2011,36(17):10522-10526. doi: 10.1016/j.ijhydene.2011.05.154
    [19] YUAN X L, ZHANG Y, CAO M, et al. Bi(OH)3/PdBi composite nanochains as highly active and durable electrocatalysts for ethanol oxidation[J]. Nano Letter,2019,19(7):4752-4759. doi: 10.1021/acs.nanolett.9b01843
    [20] LIAO H, ZHU J, HOU Y. Synthesis and electrocatalytic properties of PtBi nanoplatelets and PdBi nanowires[J]. Nanoscale,2013,6(2):1049-1055.
    [21] ZHANG M, GAO J P, HONG W, et al. Bimetallic Mn and Co encased within bamboo-like N-doped carbon nanotubes as efficient oxygen reduction reaction electrocatalysts[J]. Journal of Colloid and Interface Science,2019,537:238-246. doi: 10.1016/j.jcis.2018.11.022
    [22] CHENG Y, GUO M S, YU Y, et al. Fabrication of coral-like Pd based porous MnO2 nanosheet arrays on nickel foam for methanol electrooxidation[J]. Industrial & Engineering Chemistry Research,2018,57(32):10893-10904.
    [23] GU Z L, XIONG Z P, REN F F, et al. Flower-like PdCu catalyst with high electrocatalytic properties for ethylene glycol oxidation[J]. Journal of the Taiwan Institute of Chemical Engineers,2018,83:32-39. doi: 10.1016/j.jtice.2017.12.010
    [24] WAN Z R, BAI X, MO H, et al. Multi-porous NiAg-doped Pd alloy nanoparticles immobilized on reduced graphene oxide/CoMoO4 composites as a highly active electrocatalyst for direct alcohol fuel cell[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,614:126048.
    [25] LIU J G, ZHAO T S, CHEN R, et al. The effect of methanol concentration on the performance of a passive DMFC[J]. Electrochemistry Communications,2005,7(3):288-294. doi: 10.1016/j.elecom.2005.01.011
    [26] XU H, SONG P P, FERNEZ C, et al. Sophisticated construction of binary PdPb alloy nanocubes as robust electrocatalysts toward ethylene glycol and glycerol oxidation[J]. ACS Applied Materials & Interfaces,2018,10(15):12659-12665.
  • 加载中
图(10)
计量
  • 文章访问数:  878
  • HTML全文浏览量:  537
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-03-19
  • 录用日期:  2021-03-25
  • 网络出版日期:  2021-03-31
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回