留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极性界面对海藻酸钙凝胶单元形态与降解性能的影响

李瑜 申永彬 卞平艳 王建平

李瑜, 申永彬, 卞平艳, 等. 极性界面对海藻酸钙凝胶单元形态与降解性能的影响[J]. 复合材料学报, 2022, 39(1): 258-265. doi: 10.13801/j.cnki.fhclxb.20210330.002
引用本文: 李瑜, 申永彬, 卞平艳, 等. 极性界面对海藻酸钙凝胶单元形态与降解性能的影响[J]. 复合材料学报, 2022, 39(1): 258-265. doi: 10.13801/j.cnki.fhclxb.20210330.002
LI Yu, SHEN Yongbin, BIAN Pingyan, et al. Influence of polar interface on the morphology and degradation performance of calcium alginate gel units[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 258-265. doi: 10.13801/j.cnki.fhclxb.20210330.002
Citation: LI Yu, SHEN Yongbin, BIAN Pingyan, et al. Influence of polar interface on the morphology and degradation performance of calcium alginate gel units[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 258-265. doi: 10.13801/j.cnki.fhclxb.20210330.002

极性界面对海藻酸钙凝胶单元形态与降解性能的影响

doi: 10.13801/j.cnki.fhclxb.20210330.002
基金项目: 国家自然科学基金(31370999);河南省高校重点科研项目(18A460023)
详细信息
    通讯作者:

    王建平,博士,副教授,研究生导师,研究方向为生物力学与生物制造 E-mail:wjp.sjtu@gmail.com

  • 中图分类号: TQ427.26; R318.08

Influence of polar interface on the morphology and degradation performance of calcium alginate gel units

  • 摘要: 生物支架的降解直接影响其结构、功能及所装载细胞的存活率。以海藻酸钠为原料,氯化钙为交联剂,制备海藻酸钙水凝胶生物支架;通过交联剂溶剂中异丙醇(IPA)与去离子水(DW)比例的变化,获得不同极性条件的同轴反应流界面,从而影响海藻酸钙凝胶的凝胶单元聚集形态,考察界面极性对其降解进程的调控能力。结果表明,随着交联剂中IPA比例的增加,溶剂极性指数由9.0渐变至3.9;随着界面极性的减弱,所制备纤维的微观凝胶单元,越呈现有序性;有序而密实的凝胶单元形态减缓海藻酸盐纤维的降解速率,第5天DW基纤维支架的质量损失率为91.16%,而IPA纤维支架为73.86%;凝胶单元越致密,溶胀度越低,而溶胀平衡对降解进程有迟滞作用。

     

  • 图  1  中空纤维同轴交联直写原理图: (a)海藻酸钙支架制备;(b)交联原理过程图;(c)不同界面极性条件下海藻酸链聚集情况

    Figure  1.  Hollow fiber coaxial crosslinking directly written schematic diagram: (a) Preparation of Sodium alginate scaffolds; (b) Cross-linking schematic process; (c) Aggregation of sodium alginate molecular chains under various polarity conditions

    IPA—Iso-propyl alcohol; DW—Deionized water

    图  2  体外循环降解系统

    Figure  2.  Extracorporeal circulation degradation system

    图  3  IPA浓度对溶剂极性的影响

    Figure  3.  Influence of concentrating IPA on solvent polarity

    图  4  海藻酸钙纤维微观形貌SEM图像

    Figure  4.  Microstructure of calcium alginate fiber by SEM images

    图  5  降解过程中海藻酸钙凝胶支架形貌变化

    Figure  5.  Changes in calcium alginate hydrogel bio-scaffold morphology during degradation

    图  6  溶剂极性对海藻酸钙凝胶支架降解的影响

    Figure  6.  Effect of solvent polarity on calcium alginate hydrogel bio-scaffold scaffold degradation

    表  1  IPA与DW混合比例所制备的溶剂极性指数p与介电常数ε (25℃)

    Table  1.   Solvent polarity index p and dielectric constant ε with different mixing ratio of IPA and DW (25℃)

    DWIPA20%IPA40%IPA60%IPA80%IPA
    p9.007.807.296.896.373.90
    ε78.476.656.737.822.418.3
    Notes: DW—Deionized water; IPA—Iso-propyl alcohol; IPAx%x concentration of IPA.
    下载: 导出CSV
  • [1] BYROM D. Biomaterials: novel materials from biological sources[J]. Bioresource Technology,1991,43(1):309-331.
    [2] REES A. Polysaccharide shapes and their interactions-some recent advances[J]. Pure & Applied Chemistry,2009,53(1):1-14.
    [3] MELCHELS F, DOMINGOS M, KLEIN T J, et al. Additive manufacturing of tissues and organs[J]. Progress in Polymer Science,2012,37(8):1079-1104. doi: 10.1016/j.progpolymsci.2011.11.007
    [4] HUANG Y, HUANG Z, LIU H, et al. Photoluminescent biodegradable polyorganophosphazene: A promising scaffold material for in vivo application to promote bone regeneration[J]. Bioactive Materials,2020,5(1):102-109. doi: 10.1016/j.bioactmat.2020.01.008
    [5] ENTEKHABI E, NAZARPAK M H, SEDIGHI M, et al. Predicting degradation rate of genipin cross-linked gelatin scaffolds with machine learning[J]. Materials Science & Engineering C,2020,107:110362.1-110362.11.
    [6] CHEN H, XIE S, YANG Y, et al. Multiscale regeneration scaffold in vitro and in vivo[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials,2017,106(3):1218-1225.
    [7] VALENTIN T M, LEGGETT S E, CHEN P Y, et al. Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics[J]. Lab on a Chip,2017,17(20):3474-3488. doi: 10.1039/C7LC00694B
    [8] 贺美, 向廷生, 谢瑶, 等. 影响有机化学品快速生物降解性的分子结构参数研究进展[J]. 生态科学. 2015, 3(34): 1871-1878.

    HE Mei, XIANG Tingshneg, XIE Yao, et al. A review on molecular structural descriptors affecting ready biodegradation of organic chemicals [J]. 2015, 3(34): 1871-1878. (in Chinese).
    [9] TRIPATHI R, MISHRA B. Development and evaluation of sodium alginate–polyacrylamide graft–co-polymer-based stomach targeted hydrogels of famotidine[J]. Aaps Pharmscitech,2012,13(4):1091-1102. doi: 10.1208/s12249-012-9824-1
    [10] WONG T W. Alginate graft copolymers and alginate–co-excipient physical mixture in oral drug delivery[J]. Journal of Pharmacy & Pharmacology,2011,63(12):1497-1512.
    [11] 许冠哲, 刘袖洞, 于炜婷, 等. 海藻酸钠疏水改性研究进展[J]. 材料导报, 2013(7):76-80. doi: 10.3969/j.issn.1005-023X.2013.07.017

    XU Guanzhe, LIU Xiudong, YU Weiting, et al. Research progress on hydrophobic modification of sodium alginate[J]. Materials Review,2013(7):76-80(in Chinese). doi: 10.3969/j.issn.1005-023X.2013.07.017
    [12] BOUHADIR K H, MOONY D J. Promoting angiogenesis in engineered tissues[J]. Journal of Drug Targeting,2001,9(6):397-406. doi: 10.3109/10611860108998775
    [13] MUN C H, HWANG J Y, LEE S H. Microfluidic spinning of the fibrous alginate scaffolds for modulation of the degradation profile[J]. Tissue Engineering & Regenerative Medicine,2016,13(2):140-148.
    [14] CHAE S K, KANG E, KHADE A, et al. Micro/Nanometer-scale fiber with highly ordered structures by mimicking the spinning process of silkworm[J]. Advanced Materials,2013,25(22):3071-3078. doi: 10.1002/adma.201300837
    [15] AHN S Y, MUN C H, LEE S H. Microfluidic spinning of fibrous alginate carrier having highly enhanced drug loading capability and delayed release profile[J]. RSC Advances,2015,5(20):15172-15181. doi: 10.1039/C4RA11438H
    [16] ZHANG X L, CHEN H, YI Z, et al. Ampicillin-incorporated alginate-chitosan fibers from microfluidic spinning and for vitro release[J]. Journal of Biomaterials Science Polymer Edition,2017,28(13):1408-1425.
    [17] ANTONIOU E, ALEXANDRIDIS P. Polymer conformation in mixed aqueous-polar organic solvents[J]. European Polymer Journal,2010,46(2):324-335. doi: 10.1016/j.eurpolymj.2009.10.005
    [18] ZHANG Y, YU Y, CHEN H, et al. Characterization of printable cellular micro-fluidic channels for tissue engineering[J]. Biofabrication,2013,5(2):25004. doi: 10.1088/1758-5082/5/2/025004
    [19] GAO Q, HE Y, FU J. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery[J]. Biomaterials,2015,61:203-215. doi: 10.1016/j.biomaterials.2015.05.031
    [20] 李瑜, 刘媛媛, 李帅, 等. 交联直写海藻酸盐水凝胶中空纤维的凝胶率与溶胀度[J]. 化工学报, 2014, 65(12):5090-5096.

    LI Yu, LIU Yuanyuan, LI Shuai, et al. Gel fraction and swelling degree of hollow alginate fiber fabricatied by direct writing and crosslinking[J]. Ciesc Journal,2014,65(12):5090-5096(in Chinese).
    [21] 毛伟, 连芩, 李涤尘, 等. 立体空心血管网水凝胶支架的3D打印工艺研究[J]. 机械工程学报, 2017, 53(9):180-186. doi: 10.3901/JME.2017.09.180

    MAO Wei, LIAN Qin, LI Dichen, et al. 3D printing process for hydro gel with the three-dimensional micro tubes to mimic vascular network[J]. Journal of Mechanical Engineering,,2017,53(9):180-186(in Chinese). doi: 10.3901/JME.2017.09.180
    [22] LI N N, XIE M E, SUO H, et al. Coaxial printed double crosslinked alginate/silk fibroin vascular network scaffold[J]. Chinese Journal of Tissue Engineering Research,2019,23(18):2865-2870.
    [23] WU Y G, TABATA M. Characterization of solvent polarity of aqueous mixed solvents by using solvatochromic indicators[J]. Analytical Sciences/Supplements,2007,17:a311-a312.
    [24] KATRITZKYA R, FARA D C, YANG H, et al. Quantitative measures of solvent polarity.[J]. Chemical Reviews,2004,104(1):175-198. doi: 10.1021/cr020750m
    [25] BARAI B K, SINGHALR S, KULKARNI P R. Optimization of a process for preparing carboxymethyl cellulose from water hyacinth (Eichornia crassipes)[J]. Carbohydrate Polymers,1997,32(3–4):229-231.
    [26] 华乃震. 水基性透明液体剂型的加工、性能和差异[J]. 世界农药, 2012, 34(2):5-8. doi: 10.3969/j.issn.1009-6485.2012.02.002

    HUA Naizhen. Processing properties and differences of water-basedtransparent liquid, formulations[J]. World Pesticides,2012,34(2):5-8(in Chinese). doi: 10.3969/j.issn.1009-6485.2012.02.002
    [27] RINAUDO M. Non-covalent interactions in polysaccharide systems[J]. Macromolecular Bioscience,2006,6(8):590-610. doi: 10.1002/mabi.200600053
    [28] 胡桂香, 骆成才, 殷开梁, 等. 溶剂效应对手性咪唑衍生物对映异构体与固定相相互作用的影响[J]. 高等学校化学学报, 2013(6):202-209.

    HU Guixiang, LUO Chengcai, YIN Kailiang, et al. Influence of solvent effect on interaction between chiral imidazole derivates enantiomer and stationary phase[J]. Chemical Journal of Chinese Universities,2013(6):202-209(in Chinese).
    [29] DENA S, KOFFLER J, LYNAM D A, et al. Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair[J]. Journal of Biomedical Materials Research Part A,2016,104(3):611-619. doi: 10.1002/jbm.a.35600
    [30] 何淑兰, 尹玉姬, 张敏, 等. 组织工程用海藻酸盐水凝胶的研究进展[J]. 化工进展, 2004(11):24-28.

    HE Shulan, YIN Yuji, ZHANG Min, et al. Research progress of alginate brine gel for tissue engineeing[J]. Chemical Industry and Engneering Progress,2004(11):24-28(in Chinese).
    [31] SAHOTA P S, BUM J L, HEATON M, et al. Development of a reconstructed human skin model for angiogenesis[J]. Wound Repair and Regeneration,2010,11(4):275-284.
    [32] SHANDALOV Y, EGOIZ D, FREIMAN A, et al. A method for constructing vascularized muscle flap[J]. Methods,2015,84:70-75. doi: 10.1016/j.ymeth.2015.03.021
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  781
  • HTML全文浏览量:  432
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-12
  • 修回日期:  2021-03-13
  • 录用日期:  2021-03-24
  • 网络出版日期:  2021-03-31
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回