留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维MXene膜的构筑及在水处理应用中的研究进展

曾广勇 王彬 张俊 林清泉 冯振华

曾广勇, 王彬, 张俊, 等. 二维MXene膜的构筑及在水处理应用中的研究进展[J]. 复合材料学报, 2021, 38(7): 2078-2091. doi: 10.13801/j.cnki.fhclxb.20210330.001
引用本文: 曾广勇, 王彬, 张俊, 等. 二维MXene膜的构筑及在水处理应用中的研究进展[J]. 复合材料学报, 2021, 38(7): 2078-2091. doi: 10.13801/j.cnki.fhclxb.20210330.001
ZENG Guangyong, WANG Bin, ZHANG Jun, et al. Construction of two-dimensional MXene membrane and its research progress of application in water treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2078-2091. doi: 10.13801/j.cnki.fhclxb.20210330.001
Citation: ZENG Guangyong, WANG Bin, ZHANG Jun, et al. Construction of two-dimensional MXene membrane and its research progress of application in water treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2078-2091. doi: 10.13801/j.cnki.fhclxb.20210330.001

二维MXene膜的构筑及在水处理应用中的研究进展

doi: 10.13801/j.cnki.fhclxb.20210330.001
基金项目: 四川省科技计划项目应用基础研究(2021YJ0401);成都理工大学教师发展科研启动基金(10912-2019KYQD-07276)
详细信息
    通讯作者:

    曾广勇,研究员,硕士生导师,研究方向为新型膜材料的开发 E-mail:wuwu5125@163.com

  • 中图分类号: TQ028.8

Construction of two-dimensional MXene membrane and its research progress of application in water treatment

  • 摘要: MXene是一类新型的过渡金属碳/氮化物二维层状材料,通过选择性刻蚀掉MAX相中的A原子层制备而成。由于MXene具有特殊的微观结构和优异的理化性质,可用于高性能膜分离材料的构筑,并逐渐在废水处理和海水淡化等领域展现出良好的应用前景。但MXene在实际水处理过程中还存在不小的局限性。如MXene膜在水溶液中易发生溶胀现象,膜抗污染能力弱,分离机制也尚未有统一定论。本文归纳了近年来MXene纳米片、二维MXene膜材料的制备方法,例举了MXene膜的改性路径及其在水处理应用领域的最新报道,提出了MXene膜对水中污染物的分离机制,并对其当前急需解决的问题和未来的发展方向做出展望,为基于MXene高性能膜材料的设计和应用提供参考。

     

  • 图  1  HF刻蚀MAX相制备MXene的流程示意图[12]

    Figure  1.  Schematic diagrams of HF etching MAX phase to prepare MXene[12]

    图  2  HCl+LiF混合溶液刻蚀制备MXene电极材料的示意图[16]

    Figure  2.  Schematic diagrams of MXene electrode material prepared by HCl+LiF mixed solution etching[16]

    图  3  熔融氯化锌剥离制备MXene示意图[24]

    Figure  3.  Schematic diagram of ZnCl2 etching MAX phase to prepare MXene[24]

    图  4  MXene/聚偏氟乙烯(PVDF)膜渗透机制示意图(a)[34]和MXene/α-Al2O3复合膜组件结构示意图(b)[36]

    Figure  4.  Permeability mechanism diagram of MXene/polyvinylidene fluoride (PVDF) membrane (a)[34] and schematic diagram of MXene/α-Al2O3 composite membrane module structure (b)[36]

    图  5  Fe(OH)3造孔改性MXene/阳极氧化铝(AAO)膜的制备流程[46]

    Figure  5.  Preparation flow chart of Fe(OH)3 pore-forming modified MXene/anodic aluminum oxide (AAO) membrane[46]

    图  6  Ti3C2Tx/氧化石墨烯(GO)复合膜的结构组成示意图[50]

    Figure  6.  Schematic diagram of structure and composition of Ti3C2Tx/graphene oxide (GO) composite membrane[50]

    图  7  Al3+插层改性MXene膜的分离机制(a) 和外观(b)[55]

    Figure  7.  Separation mechanism diagram (a) and appearance (b) of Al3+ intercalation modified MXene membrane[55]

    图  8  MXene/PVDF油水分离膜(a)[62]和MXene/聚醚砜(PES)超薄油水分离膜的构筑及测试(b)[63]

    Figure  8.  MXene/PVDF oil-water separation membrane (a)[62] and construction and testing of MXene/polyethersulfone (PES) ultra-thin oil-water separation membrane (b)[63]

    图  9  表面改性膜在无压力驱动下的废水纯化机制[73]

    Figure  9.  Schematic illustration of pressure-free water purification by surface-modified membrane[73]

    图  10  MXene膜的层间距筛分机制示意图

    Figure  10.  Separation mechanism of MXene-based membrane by sieving effect of adjacent layer

    图  11  MXene材料的吸附分离机制示意图: (a)含氧官能团提供吸附位点[75]; (b)与染料和离子间的电荷相互作用[76]

    Figure  11.  Separation mechanism of MXene-based materials by adsorption: (a) Adsorption sites provided by oxygen-containing functional groups[75]; (b) Electrostatic interactions between dyes/ions and MXene[76]

  • [1] GIN D L, NOBLE R D. Designing the next generation of chemical separation membranes[J]. Science,2011,332(6030):674-676. doi: 10.1126/science.1203771
    [2] 柯胜. 膜分离技术在废水处理中的应用[J]. 上海环境科学, 2020, 39(2):66-68.

    KE Sheng. Application of membrane separation technology in wastewater treatment[J]. Shanghai Environmental Sciences,2020,39(2):66-68(in Chinese).
    [3] 张玉, 张春霞, 汪斌, 等. 新型膜分离技术在污水处理中的应用[J]. 节能与环保, 2019(4):100-101. doi: 10.3969/j.issn.1009-539X.2019.04.045

    ZHANG Yu, ZHANG Chunxia, WANG Bin, et al. Application of new membrane separation technology in wastewater treatment[J]. Energy Conservation & Environmental Protection,2019(4):100-101(in Chinese). doi: 10.3969/j.issn.1009-539X.2019.04.045
    [4] 王双, 孙函舒, 王薇, 等. 有机无机杂化膜的制备方法与应用研究[J]. 广东化工, 2019, 46(22):57-58.

    WANG Shuang, SUN Hanshu, WANG Wei, et al. Study on preparation method and application of organic-inorganic hybrid membrane[J]. Guangdong Chemical Industry,2019,46(22):57-58(in Chinese).
    [5] 王蕾. 多孔芳香骨架化合物膜的制备及分离性能研究[D]. 长春: 东北师范大学, 2019.

    WANG Lei. Preparation and separation properties of porous aromatic framework compounds membranes[D]. Changchun: Northeast Normal University, 2019(in Chinese).
    [6] NAGUIB M, PRESSER V, TALLMAN D, et al. On the topotactic transformation of Ti2AlC into a Ti—C—O—F cubic phase by heating in molten lithium fluoride in air[J]. Journal of the American Ceramic Society,2011,94(12):4556-4561. doi: 10.1111/j.1551-2916.2011.04896.x
    [7] 李凯凯. 自组装MXene复合材料的制备及吸附催化性能研究[D]. 秦皇岛: 燕山大学, 2018.

    LI Kaikai. Preparation and adsorption and catalytic performance of self-assembled MXene composites[D]. Qinhuangdao: Yanshan University, 2018(in Chinese).
    [8] 陈平平. 高通量二维层状膜通道的可控构建[D]. 郑州: 郑州大学, 2018.

    CHEN Pingping. Controllable construction of high throughput two-dimensional layered membrane channels[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
    [9] 何艳, 王李波, 王晓龙, 等. 二维晶体材料MXenes的合成、性能和应用研究进展[J]. 人工晶体学报, 2019, 48(5):787-793, 808. doi: 10.3969/j.issn.1000-985X.2019.05.002

    HE Yan, WANG Libo, WANG Xiaolong, et al. Progress in synthesis, properties and applications of two-dimensional crystal material MXenes[J]. Journal of Synthetic Crystals,2019,48(5):787-793, 808(in Chinese). doi: 10.3969/j.issn.1000-985X.2019.05.002
    [10] 郑会奇, 陈晋, 李延军. 二维晶体MXene的制备及催化领域的应用研究进展[J]. 硅酸盐通报, 2018, 37(6):1908-1913.

    ZHENG Huiqi, CHEN Jin, LI Yanjun. Advances in the preparation of two-dimensional crystal MXene and its application in catalysis[J]. Bulletin of the Chinese Ceramic Society,2018,37(6):1908-1913(in Chinese).
    [11] 姚送送, 李诺, 叶红齐, 等. 二维MXene材料的制备与电化学储能应用[J]. 化学进展, 2018, 30(7):932-946.

    YAO Songsong, LI Nuo, YE Hongqi, et al. Preparation and application of two dimensional MXene materials for electrochemical energy storage[J]. Progress in Chemistry,2018,30(7):932-946(in Chinese).
    [12] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [13] MASHTALIR O, NAGUIB M, DYATKIN B, et al. Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid[J]. Materials Chemistry and Physics,2013,139(1):147-152. doi: 10.1016/j.matchemphys.2013.01.008
    [14] 樊志敏. 多孔石墨烯及MXene基复合薄膜的构筑和体积比电容性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    FAN Zhimin. Construction and volumetric capacitance properties of porous graphene and MXene based composite films[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [15] 叶朝辉. Zr3Al3C5的酸碱刻蚀及其电化学行为的研究[D]. 武汉: 武汉理工大学, 2018.

    YE Chaohui. Study on acid-base etching and electrochemical behavior of Zr3Al3C5[D]. Wuhan: Wuhan University of Technology, 2018(in Chinese).
    [16] GHIDIU M, LUKATSKAYA M R, ZHAO M, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi: 10.1038/nature13970
    [17] SOUNDIRARAJU B, GEORGE B K. Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced raman scattering substrate[J]. ACS Nano,2017,11(9):8892-8900. doi: 10.1021/acsnano.7b03129
    [18] HALIM J, LUKATSKAYA M R, COOK K M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials,2014,26(7):2374-2381. doi: 10.1021/cm500641a
    [19] 冯万林. Ti3C2 MXene的合成及其吸波性能的研究[D]. 绵阳: 中国工程物理研究院, 2018.

    FENG Wanlin. Synthesis of Ti3C2 MXene and study on its absorbing properties[D]. Mianyang: China Academy of Engineering Physics, 2018(in Chinese).
    [20] 马亚楠, 刘宇飞, 余晨旭, 等. 不同横向尺寸单层Ti3C2Tx纳米片的制备及其电化学性能研究[J]. 无机材料学报, 2020, 35(1):93-98.

    MA Ya’nan, LIU Yufei, YU Chenxu, et al. Preparation and electrochemical properties of monolayer Ti3C2Tx nanosheets with different transverse sizes[J]. Journal of Inorganic Materials,2020,35(1):93-98(in Chinese).
    [21] 顾鹏程. 刻蚀钛铝碳基材料在水体污染物吸附应用中的研究[D]. 北京: 华北电力大学(北京), 2019.

    GU Pengcheng. Study on the application of etched titanium-aluminum-carbon based materials in the adsorption of pollutants in water[D]. Beijing: North China Electric Power University (Beijing), 2019(in Chinese).
    [22] XIAO J, WEN J, ZHAO J, et al. A safe etching route to synthesize highly crystalline Nb2CTx MXene for high performance asymmetric supercapacitor applications[J]. Electrochimica Acta, 2020, 337: 135803.
    [23] URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale,2016,8(22):11385-11391. doi: 10.1039/C6NR02253G
    [24] LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society,2019,141(11):4730-4737. doi: 10.1021/jacs.9b00574
    [25] LI Y B, SHAO H, LIN Z F et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials,2020,19:894-899. doi: 10.1038/s41563-020-0657-0
    [26] GOGOTSI Y, NIKITIN A, YE H H, et al. Nanoporous carbide-derived carbon with tunable pore size[J]. Nature Materials,2003,2(9):591-594. doi: 10.1038/nmat957
    [27] YANG Y C, HOU H S, ZOU G Q, et al. Electrochemical exfoliation of graphene-like two-dimensional nanomaterials[J]. Nanoscale,2019,11(1):16-33. doi: 10.1039/C8NR08227H
    [28] XIE X H, XUE Y, LI L, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system[J]. Nanoscale,2014,6(19):11035-11040. doi: 10.1039/C4NR02080D
    [29] XU C, WANG L B, LIU Z B, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals[J]. Nature Materials,2015,14(11):1135-1141. doi: 10.1038/nmat4374
    [30] ZHANG A T, LIU R, TIAN J M, et al. MXene-based nanocomposites for energy conversion and storage applications[J]. Chemistry: A European Journal,2020,26(29):6342-6359.
    [31] 田隆, 刘婷, 孙克宁. 用于水质净化的氧化石墨烯膜研究进展[J]. 化工学报, 2020, 71(9): 4112-4130.

    TIAN Long, LIU Ting, SUN Kening. Research progress of graphene oxide membranes for water purification[J]. CIESC Journal, 2020, 71(9): 4112-4130(in Chinese).
    [32] MARÍN P, YANG Z X, XIA Y D, et al. Concentration of unconventional methane resources using microporous membranes: Process assessment and scale-up[J]. Journal of Natural Gas Science and Engineering,2020,81:103420.
    [33] 徐瑞松, 李琳, 侯蒙杰, 等. 新型炭基膜材料前驱体聚合物的研究进展[J]. 膜科学与技术, 2020, 40(1):250-259.

    XU Ruisong, LI Lin, HOU Mengjie, et al. Research progress of new carbon based membrane precursors polymers[J]. Membrane Science and Technology,2020,40(1):250-259(in Chinese).
    [34] REN C E, HATZELI K B, ALHABEB M, et al. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes[J]. Journal of Physical Chemistry Letters,2015,6(20):4026-4031. doi: 10.1021/acs.jpclett.5b01895
    [35] LIU G Z, SHEN J, LIU Q, et al. Ultrathin two-dimensional MXene membrane for pervaporation desalination[J]. Journal of Membrane Science,2018,548:548-558.
    [36] SUN Y Q, LI S L, ZHUANG Y X, et al. Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection[J]. Journal of Membrane Science,2019,591:117350. doi: 10.1016/j.memsci.2019.117350
    [37] 司学见. 氧化石墨烯复合纳滤膜片层间距调控及其染料分离性能研究[D]. 无锡: 江南大学, 2019.

    SI Xuejian. Study on spacing control of graphene oxide composite nanofiltration membrane and its dye separation performance[D]. Wuxi: Jiangnan University, 2019(in Chinese).
    [38] 李传峰, 邵怀启, 钟顺和. 有机无机杂化膜材料的制备技术[J]. 化学进展, 2004, 16(1):83-89. doi: 10.3321/j.issn:1005-281X.2004.01.013

    LI Chuanfeng, SHAO Huaiqi, ZHONG Shunhe. Preparation of organic-inorganic hybrid membrane materials[J]. Progress in Chemistry,2004,16(1):83-89(in Chinese). doi: 10.3321/j.issn:1005-281X.2004.01.013
    [39] YANG H, CHEN Y, YE C, et al. Advances in porous organic-inorganic composite membranes[J]. Progress in Chemistry,2015,27(8):1014-1024.
    [40] WANG H, LEE J M. Recent advances in structural engineering of MXene electrocatalysts[J]. Journal of Materials Chemistry A,2020,8(21):10604-10624.
    [41] HAN R L, XIE Y L, MA X F. Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity[J]. Chinese Journal of Chemical Engineering,2019,27(4):877-883. doi: 10.1016/j.cjche.2018.10.005
    [42] WU X L, HAO L, ZHANG J K, et al. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system[J]. Journal of Membrane Science,2016,515(8):175-188.
    [43] 李群洋. 碳化钛/丁苯橡胶纳米复合材料的制备与性能研究[D]. 广州: 华南理工大学, 2019.

    LI Qunyang. Preparation and properties of titanium carbide/styrene butadiene rubber nanocomposites[D]. Guangzhou: South China University of Technology, 2019(in Chinese).
    [44] NIE J, HUANG Q, LI N, et al. Swelling characteristics and application of two-dimensional materials on hydrophilic quartz crystal resonant dew point sensor[J]. Sensors and Actuators B: Chemical,2019,298:126905.
    [45] 郝澜. 基于功能化MXene的有机溶剂纳滤膜制备及其性能优化[D]. 郑州: 郑州大学, 2018.

    HAO Lan. Preparation and performance optimization of organic solvents nanofiltration membrane based on functionalized MXene[D]. Zhengzhou: Zhengzhou University, 2018(in Chinese).
    [46] DING L, WEI Y Y, WANG Y J, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie,2017,56(7):1825-1829. doi: 10.1002/anie.201609306
    [47] PANDEY R P, RASOOL K, MADHAVAN V E, et al. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets[J]. Journal of Materials Chemistry,2018,6(8):3522-3533. doi: 10.1039/C7TA10888E
    [48] SUN Y Q, LI S L, ZHUANG Y X, et al. Tunable dextran retention of MXene-TiO2 mesoporous membranes by adjusting the 2D MXene content[J]. 2D Materials,2018,5(4):045003.
    [49] 谭晓宇, 杨少延, 李辉杰. 基于二维材料的Ⅲ族氮化物外延[J]. 化学学报, 2017, 75(3):271-279. doi: 10.6023/A16100552

    TAN Xiaoyu, YANG Shaoyan, LI Huijie. Based on two-dimensional Ⅲ families of the nitrides[J]. Acta Chimica Sinica,2017,75(3):271-279(in Chinese). doi: 10.6023/A16100552
    [50] KANG K M, KIM D W, REN C E, et al. Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: Comparison with graphene oxide and MXenes.[J]. ACS Applied Materials & Interfaces,2017,9(51):44687-44694.
    [51] LIU T, LIU X, GRAHAM N, et al. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance[J]. Journal of Membrane Science,2020,593:117431. doi: 10.1016/j.memsci.2019.117431
    [52] FENG X F, YU Z X, LONG R X, et al. Polydopamine intimate contacted two-dimensional/two-dimensional ultrathin nylon basement membrane supported RGO/PDA/MXene composite material for oil-water separation and dye removal[J]. Separation and Purification Technology,2020,247:116945. doi: 10.1016/j.seppur.2020.116945
    [53] HE S J, ZHAN Y Q, HU J X, et al. Chemically stable two-dimensional MXene@UIO-66-(COOH)2 composite lamellar membrane for multi-component pollutant-oil-water emulsion separation[J]. Composites Part B: Engineering,2020,197:108188. doi: 10.1016/j.compositesb.2020.108188
    [54] ZENG G Y, LIN Q Q, WEI K, et al. High-performing composite membrane based on dopamine-functionalized graphene oxide incorporated two-dimensional MXene nanosheets for water purification[J]. Journal of Materials Science,2021,49:6814-6829.
    [55] DING L, LI L, LIU Y C, et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater[J]. Nature Sustainability,2020,3:296-302. doi: 10.1038/s41893-020-0474-0
    [56] DING M, XU H, CHEN W, et al. 2D laminar maleic acid-crosslinked MXene membrane with tunable nanochannels for efficient and stable pervaporation desalination[J]. Journal of Membrane Science,2020,600:117871. doi: 10.1016/j.memsci.2020.117871
    [57] WAN J, CHENG Y. Remote sensing monitoring of Gulf of Mexico oil spill using ENVISAT ASAR images[C]//2013 21st International Conference on Geoinformatics. Kaifeng: IEEE, 2013.
    [58] 于景. 复杂环境中油水分离材料的制备及其性能研究[D]. 厦门: 厦门大学, 2019.

    YU Jing. Preparation and properties of oil-water separation materials in complex environment[D]. Xiamen: Xiamen University, 2019(in Chinese).
    [59] 张建会, 周晋雅, 林海波, 等. 具有水下超疏油性能的MXene高效油水分离膜[J]. 高等学校化学学报, 2019, 40(4):624-631.

    ZHANG Jianhui, ZHOU Jinya, LIN Haibo, et al. MXene highly efficient oil/water separation membrane with underwater superhydrophobic properties[J]. Chemical Journal of Chinese Universities,2019,40(4):624-631(in Chinese).
    [60] 石恒. 超亲水-水下超疏油膜材料的制备及其在油水分离上的研究[D]. 成都: 西南石油大学, 2017.

    SHI Heng. Preparation of superhydrophilic and underwater superoleophobic film materials and their applications in oil-water separation[D]. Chengdu: Southwest Petroleum University, 2017(in Chinese).
    [61] 袁腾. 超亲水超疏油复合网膜的制备及其油水分离性能研究[D]. 广州: 华南理工大学, 2015.

    YUAN Teng. Preparation of superhydrophilic and superoleophobic composite omentum and its oil-water separation properties[D]. Guangzhou: South China University of Technology, 2015(in Chinese).
    [62] ZHANG H J, WANG Z H, SHEN Y Q, et al. Ultrathin 2D Ti3C2Tx MXene membrane for effective separation of oil-in-water emulsions in acidic, alkaline, and salty environment[J]. Journal of Colloid and Interface Science,2020,561:861-869.
    [63] LI Z K, LIU Y C, LI L B, et al. Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation[J]. Journal of Membrane Science,2019,592:117361. doi: 10.1016/j.memsci.2019.117361
    [64] 周晋雅. 二维分离膜的制备及油水分离性能的研究[D]. 长春: 吉林大学, 2019.

    ZHOU Jinya. Preparation of two-dimensional separation membrane and study of oil-water separation performance[D] Changchun: Jilin University, 2019(in Chinese).
    [65] LIU G, SHEN J, JI Y, et al. Two-dimensional Ti2CTx MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration[J]. Journal of Materials Chemistry A,2019,7(19):12095-12104.
    [66] YANG G H, ZHANG D Q, ZHU G, et al. A Sm-MOF/GO nanocomposite membrane for efficient organic dye removal from wastewater[J]. RSC Advances,2020,10(14):8540-8547. doi: 10.1039/D0RA01110J
    [67] WU Y, DING L, LU Z, et al. Two-dimensional MXene membrane for ethanol dehydration[J]. Journal of Membrane Science,2019,590:117300. doi: 10.1016/j.memsci.2019.117300
    [68] 吴艺. MXene膜的制备及其液体分离性能研究[D]. 广州: 华南理工大学, 2019.

    WU Yi. Study on preparation and liquid separation properties of MXene membrane[D]. Guangzhou: South China University of Technology, 2019(in Chinese).
    [69] ZHANG S Y, LIAO S Y, QI F Y, et al. Direct deposition of two-dimensional MXene nanosheets on commercially available filter for fast and efficient dye removal[J]. Journal of Hazardous Materials,2020,384:121367. doi: 10.1016/j.jhazmat.2019.121367
    [70] XU Z, LIU G Z, YE H, et al. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration[J]. Journal of Membrane Science,2018,563:625-632. doi: 10.1016/j.memsci.2018.05.044
    [71] HU W J H, XIE L, ZENG H B. Novel sodium alginate-assisted MXene nanosheets for ultrahigh rejection of multiple cations and dyes[J]. Journal of Colloid and Interface Science,2020,568:36-45. doi: 10.1016/j.jcis.2020.02.028
    [72] MENG B C, LIU G Z, MAO Y Y, et al. Fabrication of surface-charged MXene membrane and its application for water desalination[J]. Journal of Membrane Science,2021,623:119076. doi: 10.1016/j.memsci.2021.119076
    [73] XIE X Q, CHEN C, ZHANG N, et al. Microstructure and surface control of MXene films for water purification[J]. Nature Sustainability,2019,2:856-862. doi: 10.1038/s41893-019-0373-4
    [74] YANG X, LIU Y, HU S, et al. Construction of Fe3O4@MXene composite nanofiltration membrane for heavy metal ions removal from wastewater[J]. Polymers for Advanced Technologies, 2021, 32(3): 1000-1010.
    [75] FENG X F, YU Z X, LONG R X, et al. Self-assembling 2D/2D (MXene/LDH) materials achieve ultra-high adsorption of heavy metals Ni2+ through terminal group modification[J]. Separation and Purification Technology,2020,253:117525. doi: 10.1016/j.seppur.2020.117525
    [76] JUN B M, KIM S, RHO H J, et al. Ultrasound-assisted Ti3C2Tx MXene adsorption of dyes: Removal performance and mechanism analyses via dynamic light scattering[J]. Chemosphere,2020,254:126827. doi: 10.1016/j.chemosphere.2020.126827
    [77] BERDIYOROV G R, MADJET M E, MAHMOUD K A. Ionic sieving through Ti3C2(OH)2 MXene: First-principles calculations[J]. Applied Physics Letters,2016,108(11):113110. doi: 10.1063/1.4944393
    [78] LI X, YOU W B, WANG L, et al. Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property[J]. ACS Applied Materials & Interfaces,2019,11(47):44536-44544.
  • 加载中
图(11)
计量
  • 文章访问数:  1979
  • HTML全文浏览量:  1258
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-02
  • 录用日期:  2021-03-29
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回