留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含孔洞和裂隙混合缺陷的干燥水泥砂浆导热系数相互作用直推预测模型

李云波 李宗利 姚希望 肖帅鹏 刘士达 童涛涛

李云波, 李宗利, 姚希望, 等. 含孔洞和裂隙混合缺陷的干燥水泥砂浆导热系数相互作用直推预测模型[J]. 复合材料学报, 2022, 39(1): 361-370. doi: 10.13801/j.cnki.fhclxb.20210328.002
引用本文: 李云波, 李宗利, 姚希望, 等. 含孔洞和裂隙混合缺陷的干燥水泥砂浆导热系数相互作用直推预测模型[J]. 复合材料学报, 2022, 39(1): 361-370. doi: 10.13801/j.cnki.fhclxb.20210328.002
LI Yunbo, LI Zongli, YAO Xiwang, et al. Interaction direct deduction prediction model of thermal conductivity of dry cement mortar with mixed defects of cavities and cracks[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 361-370. doi: 10.13801/j.cnki.fhclxb.20210328.002
Citation: LI Yunbo, LI Zongli, YAO Xiwang, et al. Interaction direct deduction prediction model of thermal conductivity of dry cement mortar with mixed defects of cavities and cracks[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 361-370. doi: 10.13801/j.cnki.fhclxb.20210328.002

含孔洞和裂隙混合缺陷的干燥水泥砂浆导热系数相互作用直推预测模型

doi: 10.13801/j.cnki.fhclxb.20210328.002
基金项目: 国家重点研发计划(2017YFC0405101)
详细信息
    通讯作者:

    李宗利,博士,教授,博士生导师,研究方向为混凝土力学性能及耐久性 E-mail:bene@nwsuaf.edu.cn

  • 中图分类号: TU52;TV43

Interaction direct deduction prediction model of thermal conductivity of dry cement mortar with mixed defects of cavities and cracks

  • 摘要: 水泥砂浆在浇筑、养护和受荷载后易出现缺陷,会显著改变其热传导性能。将水泥砂浆中缺陷分为孔洞和裂隙两种基本类型,基于细观力学理论中的相互作用直推(IDD)估计法,建立了孔洞和裂隙单独存在或同时存在时干燥水泥砂浆等效导热系数预测模型;基于数值模拟结果反推法,提出裂隙随机分布影响函数,改进了IDD模型预测精度;与数值模拟结果进行对比验证其合理性。结果表明,推导出的预测模型充分体现了孔洞、裂隙不同含量及特征对水泥砂浆等效导热系数的影响,预测精度高;提出的裂隙随机分布影响函数具有较高精度和良好适用性;在缺陷率一定的情况下,孔洞对水泥砂浆等效导热系数的影响比裂隙更显著。该预测模型物理基础明确,形式简单,便于工程应用。

     

  • 图  1  含孔洞和裂隙的水泥砂浆混合缺陷模型

    Figure  1.  Mixed defect model with cavities and cracks of cement mortar

    图  2  椭球夹杂示意图

    Figure  2.  Schematic diagram of ellipsoid inclusion

    图  3  干燥水泥砂浆网格划分图

    Figure  3.  Meshing diagram of dry cement mortar

    图  4  随机缺陷程序流程图

    Figure  4.  Flow chart of random defect program

    图  5  平行裂隙模型(ρ=0.05、θ=60°)

    Figure  5.  Parallel crack model (ρ=0.05, θ=60°)

    图  6  随机裂隙模型(ρ=0.05)

    Figure  6.  Random crack model (ρ=0.05)

    图  7  裂隙密度对水泥砂浆正交方向导热系数的影响

    Figure  7.  Influence of crack density on the thermal conductivity of cement mortar in the orthogonal direction

    CIDD—Correct IDD solution; IDD—Interaction direct deduction solution; NS—Numerical simulation solution

    图  8  裂隙方向对水泥砂浆导热系数的影响

    Figure  8.  Influence of crack direction on thermal conductivity of cement mortar

    图  9  裂隙长度与数量对水泥砂浆导热系数的影响

    Figure  9.  Influence of crack length and quantity on thermal conductivity of cement mortar

    图  10  随机裂隙密度对水泥砂浆导热系数的影响

    Figure  10.  Effect of random crack density on thermal conductivity of cement mortar

    L—Crack length

    图  11  随机孔洞模型(c=0.05)

    Figure  11.  Random cavity model (c=0.05)

    图  12  不同孔洞特征对水泥砂浆导热系数的影响

    Figure  12.  Influence of different cavity characteristics on thermal conductivity of cement mortar

    d—Cavity diameter

    图  13  孔洞率对水泥砂浆导热系数的影响

    Figure  13.  Influence of porosity on thermal conductivity of cement mortar

    图  14  含孔洞和裂隙缺陷模型(ρ=0.04、c=0.06)

    Figure  14.  Defect model with cavities and cracks (ρ=0.04, c=0.06)

    图  15  孔洞率 c 与裂隙密度 ρ 之比对水泥砂浆导热系数影响

    Figure  15.  Effect of the ratio of porosity c to crack density ρ on thermal conductivity of cement mortar

  • [1] 陈则韶, 钱军, 叶一火. 复合材料等效导热系数的理论推算[J]. 中国科学技术大学学报, 1992, 22(4):416-424.

    CHEN Z S, QIAN J, YE Y H. Predicting theory of effective thermal conductivity of complex material[J]. Journal of University of Science and Technology of China,1992,22(4):416-424(in Chinese).
    [2] MAXWELL J C. A treatise on electricity and magnetism[M]. New York: Dover Publication, 1954: 16-20.
    [3] 张伟平, 童菲, 邢益善, 等. 混凝土导热系数的试验研究与预测模型[J]. 建筑材料学报, 2015, 18(2):183-189. doi: 10.3969/j.issn.1007-9629.2015.02.001

    ZHANG W P, TONG F, XING Y S, et al. Experimental study and prediction model of thermal conductivity of concrete[J]. Journal of Building Materials,2015,18(2):183-189(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.02.001
    [4] 张伟平, 邢益善, 顾祥林. 基于细观复合材料的混凝土导热系数模型[J]. 结构工程师, 2012, 28(2):39-45. doi: 10.3969/j.issn.1005-0159.2012.02.007

    ZHANG W P, XING Y S, GU X L. Theoretical models of effective thermal conductivity of concrete based on composite materials in mesoscale[J]. Structural Engineers,2012,28(2):39-45(in Chinese). doi: 10.3969/j.issn.1005-0159.2012.02.007
    [5] 姚秀鹏, 韩阳, 沈雷, 等. 高温后聚丙烯纤维增强水泥基复合材料导热的多尺度方法[J]. 复合材料学报, 2021, 38(10):3531-3542.

    YAO X P, HAN Y, SHEN L, et al. Multi-scale method for thermal conductivity of polypropylene fiber reinforced cementitious composites after high temperature[J]. Acta Materiae Compositae Sinica,2021,38(10):3531-3542(in Chinese).
    [6] 王立成, 常泽, 鲍玖文. 基于多相复合材料的混凝土导热系数预测模型[J]. 水利学报, 2017, 48(7):765-772.

    WANG L C, CHANG Z, BAO J W. Prediction model for the thermal conductivity of concrete based on its composite structure[J]. Journal of Hydraulic Engineering,2017,48(7):765-772(in Chinese).
    [7] 刘嘉涵, 徐世烺, 曾强. 基于多尺度细观力学方法计算水泥基材料的导热系数[J]. 建筑材料学报, 2018, 21(2):293-298. doi: 10.3969/j.issn.1007-9629.2018.02.019

    LIU J H, XU S L, ZENG Q. An investigation of thermal conductivity of cement-based composites with multi-scale micromechanical method[J]. Journal of Building Materials,2018,21(2):293-298(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.02.019
    [8] ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London, 1957, 241(1226): 376−396.
    [9] 张研, 韩林. 细观力学基础[M]. 北京: 科学出版社, 2014: 78-90.

    ZHANG Y, HAN L. Foundation of mesomechanics[M]. Beijing: Science Press, 2014: 78-90 (in Chinese).
    [10] 钟轶峰, 张亮亮, 周小平, 等. 复合材料热传导性能的变分渐近均匀化细观力学模型[J]. 复合材料学报, 2015, 32(4):1173-1178.

    ZHONG Y F, ZHANG L L, ZHOU X P, et al. Variational asymptotic homogenization micromechanics model for thermal conductivity of composites[J]. Acta Materiae Compositae Sinica,2015,32(4):1173-1178(in Chinese).
    [11] 孙海浩, 石义雷, 刘伟强, 等. 随机结构复合材料等效导热系数的理论预测[J]. 复合材料学报, 2021, 38(9):2918-2926.

    SUN H H, SHI Y L, LIU W Q, et al. Theoretical prediction for effective thermal conductivity of composite materials with random structure[J]. Acta Materiae Compositae Sinica,2021,38(9):2918-2926(in Chinese).
    [12] 张枫, 肖建庄, 宋志文. 混凝土导热系数的理论模型及其应用[J]. 商品混凝土, 2009(2):23-25, 51.

    ZHANG F, XIAO J Z, SONG Z W. The prediction models of thermal conductivity of concrete and their application[J]. Ready-Mixed Concrete,2009(2):23-25, 51(in Chinese).
    [13] 唐世斌, 唐春安, 梁正召, 等. 混凝土热传导与热应力的细观特性及热开裂过程研究[J]. 土木工程学报, 2012, 45(2):732-747.

    TANG S B, TANG C A, LIANG Z Z, et al. Study of thermal conduction and thermal stress of concrete at mesoscopic level and its thermal cracking processes[J]. China Civil Engineering Journal,2012,45(2):732-747(in Chinese).
    [14] 孙颖颖, 周璐瑶, 韩宇, 等. 气泡和气隙影响六方氮化硼/环氧树脂复合材料导热性能的有限元模拟[J]. 复合材料学报, 2020, 37(10):2482-2488.

    SUN Y Y, ZHOU L Y, HAN Y, et al. Numerical analysis of the effect of air bubbles and gaps on thermal conductivity of hexagonal boron nitride/epoxy composites[J]. Acta Materiae Compositae Sinica,2020,37(10):2482-2488(in Chinese).
    [15] 李守巨, 刘迎曦, 于贺. 多孔材料等效导热系数与分形维数关系的数值模拟研究[J]. 岩土力学, 2009, 30(5):1465-1470. doi: 10.3969/j.issn.1000-7598.2009.05.049

    LI S J, LIU Y X, YU H. Numerical simulation of relationship between thermal conductivity of porous material and fractal dimension[J]. Rock and Soil Mechanics,2009,30(5):1465-1470(in Chinese). doi: 10.3969/j.issn.1000-7598.2009.05.049
    [16] SHAFIRO B, KACHANOV M. Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes[J]. Journal of Applied Physics,2000,87(12):8561-8569. doi: 10.1063/1.373579
    [17] ZHENG Q S, DU D X. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution[J]. Journal of the Mechanics and Physics of Solids,2001,49:2765-2788. doi: 10.1016/S0022-5096(01)00078-3
    [18] ZHOU C S, LI K F, PANG X Y. Effect of crack density and connectivity on the permeability of microcracked solids[J]. Mechanics of Materials,2011,43:969-978. doi: 10.1016/j.mechmat.2011.08.011
    [19] 周春圣, 李克菲. 含裂纹夹杂多孔材料的渗透性理论与数值分析[J]. 工程力学, 2013, 30(4):150-156. doi: 10.6052/j.issn.1000-4750.2011.11.0753

    ZHOU C S, LI K F. Theoretical and numerical analyses of permeability of porous medium with cracking inclusions[J]. Engineering Mechanics,2013,30(4):150-156(in Chinese). doi: 10.6052/j.issn.1000-4750.2011.11.0753
    [20] HASHIN Z. Assessment of the self-consistent scheme approximation: Conductivity of particulate composites[J]. Journal of Composite Materials,1968,2(3):284-300. doi: 10.1177/002199836800200302
    [21] DU D X, ZHENG Q S. A further exploration of the interaction direct derivative (IDD) estimate for the effective properties of multiphase composites taking into account inclusion distribution[J]. Acta Mechanics,2002,157(1):61-80.
    [22] 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006: 15-36.

    YANG S M, TAO W Q. Heat transfer[M]. Beijing: Higher Education Press, 2006: 15-36 (in Chinese).
    [23] KACHANOV M. Effective elastic properties of cracked solids: Critical review of some basic concepts[J]. Applied Mechanics Reviews,1992,45 (8):304–335.
    [24] 朱伯芳. 大体积混凝土温度应力与温度控制[M]. 北京: 中国电力出版社, 2012: 8-12.

    ZHU B F. Thermal stresses and temperature control of mass concrete[M]. Beijing: China Electric Power Press, 2012: 8-12(in Chinese).
  • 加载中
图(15)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  305
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 修回日期:  2021-03-10
  • 录用日期:  2021-03-23
  • 网络出版日期:  2021-03-29
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回