留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TG800碳纤维/聚酰亚胺树脂复合材料带翻边开口圆柱壳机匣件高温气动载荷下的承载性能

杨峰 陈玉龙 罗旺 史剑 贾林江 陈子光

杨峰, 陈玉龙, 罗旺, 等. TG800碳纤维/聚酰亚胺树脂复合材料带翻边开口圆柱壳机匣件高温气动载荷下的承载性能[J]. 复合材料学报, 2021, 38(7): 2184-2195. doi: 10.13801/j.cnki.fhclxb.20210326.001
引用本文: 杨峰, 陈玉龙, 罗旺, 等. TG800碳纤维/聚酰亚胺树脂复合材料带翻边开口圆柱壳机匣件高温气动载荷下的承载性能[J]. 复合材料学报, 2021, 38(7): 2184-2195. doi: 10.13801/j.cnki.fhclxb.20210326.001
YANG Feng, CHEN Yulong, LUO Wang, et al. Load-bearing capability of TG800 carbon fiber/polyimide resin composite cylindrical casing with flange and window under high-temperature aerodynamic load[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2184-2195. doi: 10.13801/j.cnki.fhclxb.20210326.001
Citation: YANG Feng, CHEN Yulong, LUO Wang, et al. Load-bearing capability of TG800 carbon fiber/polyimide resin composite cylindrical casing with flange and window under high-temperature aerodynamic load[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2184-2195. doi: 10.13801/j.cnki.fhclxb.20210326.001

TG800碳纤维/聚酰亚胺树脂复合材料带翻边开口圆柱壳机匣件高温气动载荷下的承载性能

doi: 10.13801/j.cnki.fhclxb.20210326.001
详细信息
    通讯作者:

    杨峰,硕士,工程师,研究方向为复合材料、强度、可靠性、试验 E-mail:yangf@relialab.com

  • 中图分类号: TB332;V216

Load-bearing capability of TG800 carbon fiber/polyimide resin composite cylindrical casing with flange and window under high-temperature aerodynamic load

  • 摘要: 基于航空发动机的高温气动载荷环境,对树脂传递模塑(RTM)工艺制备的TG800碳纤维/聚酰亚胺树脂复合材料带安装翻边和壳壁开口的圆柱壳机匣件开展了常温、200℃和260℃高温气动载荷下的仿真分析和承载性能试验。仿真计算得到复合材料机匣件的高应力水平发生在安装翻边和开口处。试验利用所设计的专用试验装置与机匣试验件合围成一套能够解耦内压和轴力的被试腔体结构,通过对被试腔体施加高温气体压力和机械静载联合模拟热气流载荷,相比传统的冲压胶囊加压方式,可以对机匣的翻边和开口处进行充分热压考核。常温、200℃和260℃承载试验后对机匣开口进行了无损检测,得到开口处的分层损伤区域随着载荷增大朝着正方和正圆的趋势扩大,260℃破坏试验得到TG800碳纤维/聚酰亚胺树脂复合材料机匣件的失效模式与传统金属机匣的筒体破裂不同,失效方式为安装翻边断裂。研究表明,RTM工艺TG800碳纤维/聚酰亚胺树脂复合材料结构件的力学性能在200℃以内具备良好的温度稳定性,安装翻边为复合材料机匣件在航空发动机热气流载荷下的薄弱区域,应作为机匣件减重设计的重要优化部位。

     

  • 图  1  TG800碳纤维/聚酰亚胺树脂复合材料机匣试验件结构示意图

    Figure  1.  Schematic of TG800 carbon fiber/polyimide resin composite casing test piece

    图  2  插层补强的结构示意图

    Figure  2.  Structure diagram of intercalation reinforcement

    图  3  复合材料机匣试验件有限元模型

    Figure  3.  FEM model of composite casing test piece

    图  4  复合材料机匣试验件承载和破坏工况仿真结果

    Figure  4.  Simulation results of load-bearing and damage conditions of composite casing test pieces

    图  5  综合试验装置

    Figure  5.  Comprehensive loading test device

    图  6  环形加热器模型

    Figure  6.  Ring heater model

    图  7  TG800碳纤维/聚酰亚胺树脂复合材料机匣承载试验流程

    Figure  7.  Process of TG800 carbon fiber/polyimide resin composite casing load-bearing test

    图  8  TG800碳纤维/聚酰亚胺树脂复合材料机匣破坏试验流程

    Figure  8.  Process of TG800 carbon fiber/polyimide resin composite casing destruction test

    图  9  常温下各载荷分量作用下TG800碳纤维/聚酰亚胺树脂复合材料机匣试验件的应变数据

    Figure  9.  Strain data of TG800 carbon fiber/polyimide resin composite casing test piece under various load components at room temperature

    图  10  常温下不同载荷分量作用下TG800碳纤维/聚酰亚胺树脂复合材料机匣试验件的位移数据

    Figure  10.  Displacement data of TG800 carbon fiber/polyimide resin composite casing test piece under various load components at room temperature

    图  11  不同温度各载荷分量作用下TG800碳纤维/聚酰亚胺树脂复合材料机匣试验件的位移数据

    Figure  11.  Displacement data of TG800 carbon fiber/polyimide resin composite casing test piece under various load components at different temperatures

    图  12  不同温度各载荷分量作用下TG800碳纤维/聚酰亚胺树脂复合材料机匣试验件的应变数据

    Figure  12.  Strain data of the TG800 carbon fiber/polyimide resin composite casing test piece under various load components at different temperatures

    图  13  不同温度承载试验下TG800碳纤维/聚酰亚胺树脂复合材料机匣试验件的轴向位移数据

    Figure  13.  Axial displacement data of TG800 carbon fiber/polyimide resin composite casing test piece under different temperature load-bearing tests

    图  14  不同温度承载试验下TG800碳纤维/聚酰亚胺树脂复合材料机匣试验件的径向位移数据

    Figure  14.  Radial displacement data of TG800 carbon fiber/polyimide resin composite casing test piece under different temperature load-bearing tests

    图  15  TG800碳纤维/聚酰亚胺树脂复合材料机匣试验件在承载试验中随着载荷增大试验件开口处分层的扩展情况

    Figure  15.  Expansion of delamination at opening of TG800 carbon fiber/ polyimide resin composite casing test piece as load increases during load-bearing test

    图  16  TG800碳纤维/聚酰亚胺树脂复合材料机匣试验件破坏试验的失效照片

    Figure  16.  Failure photos of TG800 carbon fiber/polyimide resin composite casing test piece failure test

    图  17  TG800碳纤维/聚酰亚胺树脂复合材料机匣试验件破坏试验的温度载荷控制曲线

    Figure  17.  Temperature load control curve in failure test of TG800 carbon fiber/polyimide resin composite casing test piece

    图  18  TG800碳纤维/聚酰亚胺树脂复合材料机匣试验件破坏试验的轴向力载荷控制曲线

    Figure  18.  Axial force control curve in failure test of TG800 carbon fiber/polyimide resin composite casing test piece

    图  19  TG800碳纤维/聚酰亚胺树脂复合材料机匣试验件破坏试验的压力载荷控制曲线

    Figure  19.  Pressure load control curve in failure test of TG800 carbon fiber/polyimide resin composite casing test piece

    表  1  TG800碳纤维/聚酰亚胺树脂复合材料单层板性能参数

    Table  1.   Performance parameters of TG800 carbon fiber/polyimide resin composite single-layer board

    SampleAmbient260℃
    Density/(g·cm−3) 1.50 1.50
    Poisson’s ratio ν12 0.317 0.317
    0° Tension strength/MPa 2213 1821
    0° Tension modulus/GPa 155 155
    0° Compression strength/MPa 1431 665
    0° Compression modulus/GPa 144
    90° Tension strength/MPa 39 22.5
    90° Tension modulus/GPa 7.6 4
    90° Compression strength/MPa 220 96.4
    90° Compression modulus/GPa 8.73
    0° Bending strength/MPa 1881 1027
    0° Bending modulus/GPa 147 149
    Interlayer shear strength/MPa 106 51.3
    In-plan shear strength/MPa 71 34
    In-plan shear modulus/GPa 4.1 2.6
    下载: 导出CSV

    表  2  TG800碳纤维/聚酰亚胺树脂复合材料机匣试验件载荷条件

    Table  2.   Load condition of TG800 carbon fiber/polyimide resin composite casing test piece

    SampleTemperature T/℃Internal pressure P/MPaMechanical load
    Axial load Fz/NTorque load Mz/(N·m)
    Load-bearing condition Ambient 0.39 112978 −2975
    200 0.39 112978 −2975
    260 0.67 174100 −5475
    Damage condition 260 0.67~ 174100~ −5475~
    Notes: The load-bearing condition is that aero-engine may occur during the flight; Damage condition is the damage test load of the aero-engine.
    下载: 导出CSV
  • [1] 沈真. 复合材料设计手册[M]. 北京: 航空工业出版社, 2001.

    SHEN Zhen. Composite material design manual[M]. Beijing: Aviation Industry Press, 2001(in Chinese).
    [2] 李映红, 赵智姝, 韩勐. 复合材料在飞机结构上的广泛应用[J]. 装备制造技术, 2011(4):138-140. doi: 10.3969/j.issn.1672-545X.2011.04.047

    LI Yinghong, ZHAO Zhishu, HAN Meng. The wide application of composite material in the aircraft structure[J]. Equipment Manufacturing Technology,2011(4):138-140(in Chinese). doi: 10.3969/j.issn.1672-545X.2011.04.047
    [3] 梁春华. 复合材料在航空发动机上的应用[J]. 国际航空, 2005(2):60-62.

    LIANG Chunhua. Application of composite materials in aero-engine[J]. International Aviation,2005(2):60-62(in Chinese).
    [4] JULIA K. Composites for aeroengines[M]. London: Materials World, 1997.
    [5] 吕春光, 邱明星, 田静, 等. 航空发动机外涵机匣结构建模方法研究[J]. 航空发动机, 2012, 38(1):29-32. doi: 10.3969/j.issn.1672-3147.2012.01.010

    LV Chunguang, QIU Mingxing, TIAN Jing, et al. Study of modeling method for aeroengine bypass duct[J]. Aeroengine,2012,38(1):29-32(in Chinese). doi: 10.3969/j.issn.1672-3147.2012.01.010
    [6] 沈尔明, 王志宏, 滕佰秋, 等. 先进树脂基复合材料在大涵道比发动机上的应用[J]. 航空制造技术, 2011(17):56-61. doi: 10.3969/j.issn.1671-833X.2011.17.009

    SHEN Erming, WANG Zhihong, TENG Baiqiu, et al. Advanced polymer matrix composites for high bypass ratio engines application[J]. Aeronautical Manufacturing Technology,2011(17):56-61(in Chinese). doi: 10.3969/j.issn.1671-833X.2011.17.009
    [7] 赵凯, 刘鹏飞, 刘波浪, 等. 树脂基复合材料外涵道机匣的研制与应用[J]. 复合材料科学与工程, 2020(4):112-116. doi: 10.3969/j.issn.1003-0999.2020.04.018

    ZHAO Kai, LIU Pengfei, LIU Bolang, et al. Development and application of by-pass duct casingmade of resin matrix composite[J]. Composites Science and Engineering,2020(4):112-116(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.04.018
    [8] 刘振宾, 时卓, 左继成, 等. RTM工艺制备碳纤维复合材料的力学性能[J]. 沈阳理工大学学报, 2020, 39(3):16-19. doi: 10.3969/j.issn.1003-1251.2020.03.004

    LIU Zhenbin, SHI Zhuo, ZUO Jicheng, et al. Mechanical properties of carbon fiber composite prepared by RTM[J]. Journal of Shenyang Ligong University,2020,39(3):16-19(in Chinese). doi: 10.3969/j.issn.1003-1251.2020.03.004
    [9] 李伟东, 张金栋, 刘刚, 等. 国产T800碳纤维/双马来酰亚胺复合材料的界面及力学性能[J]. 复合材料学报, 2016, 33(7):1484-1491.

    LI Weidong, ZHANG Jindong, LIU Gang, et al. Interfacial and mechanical properties of domestic T800 carbon fiber/bismaleimide composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1484-1491(in Chinese).
    [10] UNTERWEGER C, DUCHOSLAV J, STIFTER D, et al. Characterization of carbon fiber surfaces and their impact on the mechanical properties of short carbon fiber reinforced polypropylene composites[J]. Composites Science & Technology,2015,108:41-47.
    [11] 赵文斌, 王静, 尹术帮. 固体火箭发动机壳体复合裙RTM成型技术[J]. 宇航材料工艺, 2020, 50(1):49-52. doi: 10.12044/j.issn.1007-2330.2020.01.007

    ZHAO Wenbing, WANG Jing, YING Shubang. RTM forming technology for composite skirts of solid rocket motor case[J]. Aerospace Materials & Technology,2020,50(1):49-52(in Chinese). doi: 10.12044/j.issn.1007-2330.2020.01.007
    [12] 李晔, 张连旺, 张尧州 等. 厚度对RTM成型国产T800碳纤维增强复合材料力学性能的影响[J]. 高科技纤维与应用, 2020, 45(4):27-32. doi: 10.3969/j.issn.1007-9815.2020.04.005

    LI Ye, ZHANG Lianwang, ZHANG Yaozhou, et al. Effects of thickness on mechanical properties of domestic T800 carbon fiber composites by RTM[J]. Hi-Tech Fiber and Application,2020,45(4):27-32(in Chinese). doi: 10.3969/j.issn.1007-9815.2020.04.005
    [13] 汪厚冰, 李新祥, 魏景超 等. 复合材料曲面帽形加筋壁板在内压-轴压联合载荷下的屈曲及承载性能[J]. 航空制造技术, 2020, 63(18):55-64, 81.

    WANG Houbing, LI Xinxiang, WEI Jingchao, et al. Buckling and post-buckling of curved hat-stiffened composite panels under combined internal pressure and axial compression[J]. Aeronautical Manufacturing Technology,2020,63(18):55-64, 81(in Chinese).
    [14] 齐红宇, 温卫东, 齐红元, 等. 航空发动机复合材料机匣屈曲特性的有限元分析[J]. 航空动力学报, 2001, 16(4):335-339. doi: 10.3969/j.issn.1000-8055.2001.04.008

    QI Hongyu, WEN Weidong, QI Hongyuan, et al. FEA method for the critical buckling load of aeroengine composite case[J]. Journal of Aerospace Power,2001,16(4):335-339(in Chinese). doi: 10.3969/j.issn.1000-8055.2001.04.008
    [15] 李传习, 罗南海, 柯璐, 等. 胶膜连接碳纤维增强树脂复合材料板-钢搭接接头室温条件的力学性能试验[J]. 复合材料学报, 2020, 37(2):318-327.

    LI Chuanxi, LUO Nanhai, KE Lu, et al. Experimental study on the carbon fiber reinforced plomyer composite laminate-steel lap joints connected with a film adhesive at room temperature[J]. Acta Materiae Compositae Sinica,2020,37(2):318-327(in Chinese).
    [16] 解江, 宋山山, 牟浩蕾, 等. 典型螺栓连接CFRP薄壁C型柱轴压失效行为: 试验及数值模拟[J]. 复合材料学报, 2021, 38:DOI: 10.13801/j.cnki.fhclxb.20201215.001.

    XIE Jiang, SONG Shanshan, MOU Haolei, et al. Axial compression failure behavior of typical bolted CFRP thin-walled C-channels: Experimental and numerical simulation[J]. Acta Materiae Compositae Sinica,2021,38:DOI: 10.13801/j.cnki.fhclxb.20201215.001(in Chinese).
    [17] 熊美蓉, 陈琳, 刘传军. 复合材料开口有限元建模方法研究[J]. 高科技纤维与应用, 2020, 45(3):56-62. doi: 10.3969/j.issn.1007-9815.2020.03.010

    XIONG Meirong, CHEN Lin, LIU Chuanjun. Research on finite element modeling of composite cutout[J]. Hi-Tech Fiber and Application,2020,45(3):56-62(in Chinese). doi: 10.3969/j.issn.1007-9815.2020.03.010
    [18] 熊美蓉, 陈琳, 张达, 等. 双轴载荷下复合材料开口强度分析与试验方法研究[J]. 高科技纤维与应用, 2020, 45(5):38-44. doi: 10.3969/j.issn.1007-9815.2020.05.007

    XIONG Meirong, CHEN Lin, ZHANG Da, et al. Stress analysis and test verification of composite laminate with a hole under biaxial loading[J]. Hi-Tech Fiber and Application,2020,45(5):38-44(in Chinese). doi: 10.3969/j.issn.1007-9815.2020.05.007
    [19] 张伟, 甘健, 王志瑾. 多工况下复合材料层合板开口补强优化设计[J]. 航空工程进展, 2013, 4(2):193-198. doi: 10.3969/j.issn.1674-8190.2013.02.010

    ZHANG Wei, GAN Jian, WANG Zhijin. Optimization of reinforcing structure for composite laminates with cutout subject to different load cases[J]. Advances in Aeronautical Science and Engineering,2013,4(2):193-198(in Chinese). doi: 10.3969/j.issn.1674-8190.2013.02.010
    [20] 周华志, 王志瑾. 复合材料层合板开口补强技术试验和仿真研究[J]. 航空工程进展, 2019, 10(4):550-561.

    ZHOU Huazhi, WANG Zhijin. Experimental and simulation study on opening reinforcement techniques of composite laminates[J]. Advances in Aeronautical Science and Engineering,2019,10(4):550-561(in Chinese).
    [21] 张瑜, 程博, 张让威, 等. 复合材料机匣整体翻边拼接结构设计与试验验证[J]. 纤维复合材料, 2019, 36(2):34-38, 48.

    ZHANG Yu, CHENG Bo, ZHANG Rangwei, et al. Structure design and experimental verification of integral flanged composite casing[J]. Fiber Composites,2019,36(2):34-38, 48(in Chinese).
    [22] SERAFINI T T, DELVIGS P, LIGHTSEY G R. Thermally stable polymides from solutions of monomeric reactants[J]. Journal of Applied Polymer Science,1972,16(4):905-915. doi: 10.1002/app.1972.070160409
    [23] MICHAEL A M, MARRY B, MADOR. PMR polyimides with enhanced for high temperature application[C]//46th International SAMPE Symposium and Exhibition. California: SAMPE, 2001: 497-509.
    [24] 张朋, 周立正, 包建文, 等. 耐350℃ RTM聚酰亚胺树脂及其复合材料性能[J]. 复合材料学报, 2014, 31(2):345-352.

    ZHANG Peng, ZHOU Lizheng, BAO Jianwen, et al. Properties of 350℃ temperature-resistant RTM polyimide matrix resin and its composites[J]. Acta Materiae Compositae Sinica,2014,31(2):345-352(in Chinese).
    [25] 金东升, 张庆茂, 张朋, 等. RTM在耐高温复材结构中的应用问题与对策[C]//中国复合材料学会第二十一届全国复合材料学术会议(NCCM-21)论文集. 中国航空学会, 2020: 359-364.

    JIN Dongsheng, ZHANG Qingmao, ZHANG Peng, et al. Application problems and countermeasures of RTM in high temperature resistant composite structure[C]//NCCM-21. Chinese Society of Aeronautic and Astronautics, 2020: 359-364(in Chinese).
    [26] 陈卓异, 彭彦泽, 李传习, 等. 高温下双搭接钢-CFRP板胶黏界面力学性能试验[J]. 复合材料学报, 2021, 38(2):449-460.

    CHEN Zhuoyi, PENG Yanze, LI Chuanxi, et al. Experimental study for the adhesive interface mechanical properties of double lapped steel-CFRP plate at high temperature[J]. Acta Materiae Compositae Sinica,2021,38(2):449-460(in Chinese).
    [27] 高艺航, 王世勋, 石玉红, 等. MT300/KH420碳纤维增强聚酰亚胺树脂复合材料层合圆柱壳高温承载性能[J]. 复合材料学报, 2021, 38(7):2172-2183.

    GAO Yihang, WANG Shixun, SHI Yuhong, et al. Load-bearing capability of laminated MT300/KH420 carbon fiber reinforced polyimide resin composite cylindrical shell at high temperatures[J]. Acta Materiae Compositae Sinica,2021,38(7):2172-2183(in Chinese).
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  1059
  • HTML全文浏览量:  255
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-19
  • 录用日期:  2021-03-07
  • 网络出版日期:  2021-03-29
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回