留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外场对SiCp/AZ91D镁基复合材料组织和性能的影响

李紫阳 薄文杰 张清林 耿桂宏 周乐章 王月

李紫阳, 薄文杰, 张清林, 等. 外场对SiCp/AZ91D镁基复合材料组织和性能的影响[J]. 复合材料学报, 2022, 39(1): 275-284. doi: 10.13801/j.cnki.fhclxb.20210325.001
引用本文: 李紫阳, 薄文杰, 张清林, 等. 外场对SiCp/AZ91D镁基复合材料组织和性能的影响[J]. 复合材料学报, 2022, 39(1): 275-284. doi: 10.13801/j.cnki.fhclxb.20210325.001
LI Ziyang, BO Wenjie, ZHANG Qinglin, et al. Effect of compound field on microstructure and properties of SiCp/AZ91D magnesium matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 275-284. doi: 10.13801/j.cnki.fhclxb.20210325.001
Citation: LI Ziyang, BO Wenjie, ZHANG Qinglin, et al. Effect of compound field on microstructure and properties of SiCp/AZ91D magnesium matrix composites[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 275-284. doi: 10.13801/j.cnki.fhclxb.20210325.001

外场对SiCp/AZ91D镁基复合材料组织和性能的影响

doi: 10.13801/j.cnki.fhclxb.20210325.001
基金项目: 国家自然科学基金 (52061002);宁夏自然科学基金 (2019AAC03101);北方民族大学研究生创新项目 (YCX20123)
详细信息
    通讯作者:

    耿桂宏,博士,教授,硕士生导师,研究方向为镁铝轻金属基复合材料 E-mail:gengguihong@163.com

  • 中图分类号: TB331; TG113.1; TG113.25+1

Effect of compound field on microstructure and properties of SiCp/AZ91D magnesium matrix composites

  • 摘要: 在常规条件、电磁模拟微重力场、脉冲电流场和“电磁模拟微重力+脉冲电流”复合场四种外场条件下制备出SiCp含量5wt%的SiCp/AZ91D镁基复合材料,分析测试结果表明:在常规条件下,样品晶粒粗大,β-Mg17Al12相呈现出无规律的网格状结构,新生相Mg2Si以颗粒状的初生相和树枝状的共晶相存在;在电磁模拟微重力场条件下,β-Mg17Al12相细化为零散分布的短棒状和颗粒状,Mg2Si全部转化为花纹状的共晶相;在脉冲电流场条件下,β-Mg17Al12相呈现出规律分布的矩形网格状,Mg2Si以方向性明显的树枝状共晶相存在;“电磁模拟微重力+脉冲电流”复合场则兼具前述两种外场的优点,样品中的晶粒明显细化,β-Mg17Al12相呈现为颗粒状、短棒状和矩形网格状,Mg2Si转变为花纹状和树枝状的共晶组织贯穿组织晶粒,相比常规条件下的样品,其显微硬度提高了25.1%,摩擦性能提高了31%。

     

  • 图  1  真空感应加热搅拌炉原理图

    Figure  1.  Schematic diagram of vacuum induction stirring furnace equipment

    图  2  “电磁模拟微重力+电脉冲”复合场熔炼设备原理图

    Figure  2.  Schematic diagram of "electromagnetic simulation microgravity + electric pulse" complex field melting equipment

    图  3  加热温度曲线

    Figure  3.  Heating temperature curve

    图  4  SiCp/AZ91D镁基复合材料铸锭

    Figure  4.  SiCp/AZ91D magnesium matrix composite ingot casting

    图  5  在不同外场条件下制备的铸态SiCp/AZ91D镁基复合材料的低倍SEM图像

    Figure  5.  Low magnification SEM images of the as-cast SiCp/AZ91D composites under different field conditions ((a) Normal solidification condition; (b) Electromagnetic simulation of microgravity field condition; (c) Pulsed current field condition; (d) Compound field condition)

    图  6  在不同外场条件下铸态SiCp/AZ91D镁基复合材料的高倍SEM图像

    Figure  6.  High magnification SEM images of the as-cast SiCp/AZ91D composites under different field conditions ((a) Normal solidification condition; (b) Electromagnetic simulation of microgravity field condition; (c) Pulsed current field condition; (d) Compound field condition)

    图  7  铸态SiCp/AZ91D镁基复合材料的EDS能谱图

    Figure  7.  EDS spectra of the as-cast SiCp/AZ91D composites

    图  8  铸态SiCp/AZ91D镁基复合材料的XRD图谱

    Figure  8.  XRD spectra of the as-cast SiCp/AZ91D composites

    图  9  SiCp/AZ91D镁基复合材料固溶处理后的金相照片

    Figure  9.  Metallographic photos of the SiCp/AZ91D composites after solid solution treatment((a) Normal condition; (b) Microgravity field condition; (c) Pulsed current field condition; (d) Compound field condition)

    图  10  铸态SiCp/AZ91D镁基复合材料的显微硬度和摩擦性能

    Figure  10.  Friction coefficient and microhardness of the as-cast SiCp/AZ91D composites

    图  11  铸态SiCp/AZ91D镁基复合材料的显微硬度压痕

    Figure  11.  Microhardness indentation of the as-cast SiCp/AZ91D composites under compound field((a) α-Mg in SiCp/AZ91D composites prepared under normal condition; (b) Mg2Si in SiCp/AZ91D composites prepared under compound field)

    图  12  铸态SiCp/AZ91D镁基复合材料摩擦曲线

    Figure  12.  Friction curves of the as-cast SiCp/AZ91D magnesium matrix composites

    表  1  AZ91D镁合金的主要成分

    Table  1.   Chemical composition of AZ91D alloy

    ElementAlZnMnSiCuMg
    Content/wt% 9 0.67 0.25 0.05 0.015 Balance
    下载: 导出CSV
  • [1] 丁文江. 镁合金科学与技术[M]. 北京: 科学出版社, 2007.

    DING W J. Magnesium alloy science and technology[M]. Beijing: Science Press, 2007(in Chinese).
    [2] MALAKI M, XU W, ASHISH K. K, et al. Advanced metal matrix nanocomposites[J]. Metals,2019,9(3):330.
    [3] 吴国华, 陈玉狮, 丁文江. 镁合金在航空航天领域研究应用现状与展望[J]. 载人航天, 2016, 22(3):281-292. doi: 10.3969/j.issn.1674-5825.2016.03.002

    WU G H, CHEN Y S, DING W J. Current research application and future prospect of magnesium alloys in aerospace industry[J]. Manned Spaceflight,2016,22(3):281-292(in Chinese). doi: 10.3969/j.issn.1674-5825.2016.03.002
    [4] 曾小勤, 朱庆春, 李扬欣等. 镁合金中的第二相颗粒强化[J]. 中国材料进展, 2019, 38(3):193-204, 250.

    ZENG X Q, ZHU Q C, LI Y X, et al. Second phase particle strengthening in magnesium alloys[J]. Materials China,2019,38(3):193-204, 250(in Chinese).
    [5] KARAKULAK E. A review: Past, present and future of grain refining of magnesium castings[J]. Journal of Magnesium and Alloys,2019,7(3):15.
    [6] CHEN L Y, XU J Q, CHOI H, et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles[J]. Nature, 2015, 528: 539-543.
    [7] 赵聪铭, 邓坤坤, 聂凯波, 等. 挤压包覆轧制对SiCp增强镁合金 (AZ91) 复合板显微组织和力学性能的影响[J]. 复合材料学报, 2020, 37(1) ; 164-172.

    ZHAO C M, DENG K K, NIE K B, et al. Effect of extrusion-cladding rolling on microstructure and mechanical property of SiCp reinforced magnesium alloy(AZ91) clad plate[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 164-172(in Chinese).
    [8] CHEN T J, JIANG X D, MA Y, et al. Grain refinement of AZ91D magnesium alloy by SiC[J]. Journal of Alloys and Compounds,2010,496(1):218-225.
    [9] HEMANTH J. Development and property evaluation of alu minum alloy reinforced with nano-ZrO, metal matrix composites (NMMCs)[J]. Materials Science and Engineering A, 2009, 507: 110-113.
    [10] HAMEDAN A D, SHAHMIRI M. Production of A356-1 wt% SiC nanocomposite by the modified stir casting method[J]. Materials Science and Engineering A, 2012, 556: 921-926.
    [11] SAIIADI S A, EZATPOUR H, BEYGI H. Microstructure and mechanical properties of Al-Al203 micro and nano composites fabricated by stir casting[J]. Materials Science and Engineering A, 2011, 528: 8765-8771.
    [12] 常海, 黄勇, 胡小石. 搅拌铸造法制备短碳纤维/AZ91复合材料的组织与性能[J]. 复合材料学报, 2019, 36(1):159-166.

    HANG H, HUANG Y, HU X S. Microstructure and mechanical properties of short carbon fiber/AZ91 composite fabricated by stir-casting[J]. Acta Materiae Compositae Sinica,2019,36(1):159-166(in Chinese).
    [13] 金培鹏, 韩丽, 王金辉. 轻金属基复合材料[M]. 北京: 国防工业出版社, 2013.

    JIN P P, HAN L, WANG J H. Light metal matrix composites[M]. Beijng: National Defence Industry Press, 2013(in Chinese).
    [14] 杨院生, 付俊伟, 罗天骄, 等. 镁合金低压脉冲磁场晶粒细化[J]. 中国有色金属学报, 2011, 21(10):2639-2649.

    YANG Y S, FU J W, LUO T J, et al. Grain refinement of magnesium alloys under low-voltage pulsed magnetic field[J]. The Chinese Journal of Nonferrous Metals,2011,21(10):2639-2649(in Chinese).
    [15] ZHAO Y T, ZHANG S L, CHEN G. Alu minum matrix composites reinforced by in situ Al2O3 and Al3Zr particles fabricated via magneto chemistry reaction[J]. Nonferrous Metals Society China,2010,20:2129-2133. doi: 10.1016/S1003-6326(09)60429-5
    [16] 余挺, 王东新, 秦春, 等. 强脉冲电流对Cu-SiCp/AZ91D组织和性能的影响[J]. 真空科学与技术学报, 2018, 38(10):906-912.

    YU T, WANG D X, QIN C, et al. Modification of Mg-Alloy AZ91D by adding Cu-coated SiC powder and by passing pulse current[J]. Chinese Journal of Vacuum Science and Technology,2018,38(10):906-912(in Chinese).
    [17] 余挺, 王东新, 秦春, 等. 微重力磁场对Cu-SiCp/AZ91D复合材料组织及性能的影响[J]. 特种铸造及有色合金, 2018, 38(10):1112-1115.

    YU T, WANG D X, QIN C, et al. Effects of the microgravity on microstructure and performance of Cu-SiCp/AZ91D composites[J]. Special Casting & Nonferrous Alloys,2018,38(10):1112-1115(in Chinese).
    [18] 耿桂宏, 郝维新. 金属熔体块体纳米材料制备系统: 中国, ZL201410816445.7[P]. 2017-06-06.

    GENG G H, HAO W X. Preparation system of metal melt bulk nanomaterials: China, ZL201410816445.7[P]. 2017-06-06(in Chinese).
    [19] CHEN T J, MA Y, LV W B, et al. Grain refinement of AM60B magnesium alloy by SiC particles[J]. Journal of Materials Science,2010,45(6):6732-6738.
    [20] SHENG S D, CHEN D, CHEN Z H. Effects of Si addition on microstructure and mechanical properties of RS/PM (rapid solidification and powder metallurgy) AZ91 alloy[J]. Journal of Alloys and Compounds,2008,470(1):L17-L20.
    [21] 郭学锋. 细晶镁合金制备方法及组织与性能[M]. 北京: 冶金工业出版社, 2010.

    GUO X F. Preparation method, microstructure and properties of fine grain magnesium alloy[M]. Beijing: Metallurgical Industry Press, 2010(in Chinese).
    [22] 李凡国, 于思荣, 袁明. Mg2Si/AZ91D复合材料阻尼性能[J]. 复合材料学报, 2017, 34(9):1997-2004.

    LI F, YU S, YUAN M. Damping capacity of Mg2Si/AZ91D composites[J]. Acta Materiae Compositae Sinica,2017,34(9):1997-2004(in Chinese).
    [23] 韩秋华. AZ91D热处理中β相的析出特征对合金组织及力学性能的影响[D]. 兰州: 兰州理工大学, 2011.

    HAN Q H. Effect of precipitation morphology of β phase on microstructure and mechanical properties of AZ91D magnesium alloys[D]. Lanzhou: Lanzhou University of Technology, 2011(in Chinese).
    [24] BARNAK J P, SPRECHER A F, CONRAD H. Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing[J]. Scripta Metall,1995,32(6):879-884. doi: 10.1016/0956-716X(95)93218-S
    [25] JIANG H X, HE J, ZHAO J Z. Influence of electric current pulses on the solidification of Cu-Bi-Sn immiscible alloys[J]. Scientific Reports,2015,5(1):12680. doi: 10.1038/srep12680
    [26] AHMED T, JIANG H X, LI W, et al. Solidification of Pb-Al Alloys under the influence of electric current pulses[J]. Acta Metallurgica Sinica (English Letters),2018,31(8):842-852. doi: 10.1007/s40195-017-0685-1
    [27] 张荣生, 刘海洪. 快速凝固技术[M]. 北京: 冶金工业出版社, 1994.

    ZHANG R S, LIU H H. Rapid solidification technique[M]. Beijing: Metallurgical Industry Press, 1994(in Chinese).
    [28] LI Z Y, YU T, WANG D, et al. Effect of the electromagnetic compound field on the grain growth and wear resistance of a Cu-Pb monotectic alloy[J]. Materiali in Tehnologije,2020,54(2):243-249. doi: 10.17222/mit.2019.115
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  809
  • HTML全文浏览量:  247
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 修回日期:  2021-03-03
  • 录用日期:  2021-03-18
  • 网络出版日期:  2021-03-26
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回