留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同预拉力和冲击能量下BFRP筋的横向抗冲击性能

朱德举 李振坤 郭帅成 李晟 易勇

朱德举, 李振坤, 郭帅成, 等. 不同预拉力和冲击能量下BFRP筋的横向抗冲击性能[J]. 复合材料学报, 2022, 39(1): 371-380. doi: 10.13801/j.cnki.fhclxb.20210324.001
引用本文: 朱德举, 李振坤, 郭帅成, 等. 不同预拉力和冲击能量下BFRP筋的横向抗冲击性能[J]. 复合材料学报, 2022, 39(1): 371-380. doi: 10.13801/j.cnki.fhclxb.20210324.001
ZHU Deju, LI Zhenkun, GUO Shuaicheng, et al. Lateral impact resistance of BFRP tendon under different pretensions and impact energies[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 371-380. doi: 10.13801/j.cnki.fhclxb.20210324.001
Citation: ZHU Deju, LI Zhenkun, GUO Shuaicheng, et al. Lateral impact resistance of BFRP tendon under different pretensions and impact energies[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 371-380. doi: 10.13801/j.cnki.fhclxb.20210324.001

不同预拉力和冲击能量下BFRP筋的横向抗冲击性能

doi: 10.13801/j.cnki.fhclxb.20210324.001
基金项目: 国家自然科学基金(U1806225;51778220);国家重点研发计划项目(2017YFC0703006);湖湘高层次人才聚集工程-创新人才(2018RS3057);湖南省高新技术产业科技创新引领计划项目(2020GK2079)
详细信息
    通讯作者:

    朱德举,博士,教授,博士生导师,研究方向为生物材料多尺度力学行为及仿生、高性能纤维/织物增强水泥基和树脂基复合材料、防弹高性能纤维布的力学特性和有限元分析、冲击和高应变率试验技术 E-mail:dzhu@hnu.edu.cn

  • 中图分类号: TB332

Lateral impact resistance of BFRP tendon under different pretensions and impact energies

  • 摘要: 为研究玄武岩纤维增强树脂基复合材料(Basalt fiber reinforced polymer,BFRP)筋的低速冲击性能,通过落锤冲击试验测试了不同预拉力比值(2%、10%、20%和30%)和不同能量(12.76~31.90 J)作用下BFRP筋的低速冲击响应,同时测试了未完全断裂试件的残余拉伸承载力。结果表明:BFRP筋的损伤破坏模式包括冲击面树脂破碎、部分纤维断裂和BFRP筋完全断裂。在冲击能量为19.14 J,预拉力从2%增大到10%和20%时,BFRP筋的破坏模式从冲击面树脂破碎转变为部分纤维断裂。施加预拉力提高了BFRP筋断裂时的耗能,但对峰值荷载影响较小。BFRP筋未完全断裂时,试件的残余变形、耗能和冲击时间与预拉力呈负相关;当BFRP筋完全断裂时,冲击后试样的残余变形随预拉力的增大而减小,耗能和冲击时间先增大后减小。BFRP筋的残余拉伸承载力随冲击能量的增大而减小。研究发现BFRP筋的残余拉伸承载力和试件耗能/总冲击能量(耗能比)都能较好地评估BFRP筋的损伤程度。本研究成果可以为预应力BFRP筋抗冲击设计提供重要参考。

     

  • 图  1  BFRP冲击试件

    Figure  1.  Impact specimen of BFRP

    图  2  低速冲击测试用冲击锤头及BFRP筋安装支座

    Figure  2.  Impactor and BFRP tendon mounting support for low-velocity impact test

    图  3  不同冲击能量和预拉力下BFRP筋的冲击力-变形曲线

    Figure  3.  Impact force-deformation curves of BFRP tendon under different impact energies and pretension ratios

    P2, P10, P20, P30—Pretension ratios of 2%, 10%, 20% and 30%, respectively

    图  4  不同冲击能量下2%预拉力的BFRP筋的冲击破坏形态

    Figure  4.  Damage modes of BFRP tendon under 2% pretension ratio and different impact energies

    图  5  不同冲击能量和预拉力下BFRP筋的冲击力和能量-时程曲线

    Figure  5.  Impact force and energy-time history curves of BFRP tendon under different impact energies and pretension ratios

    图  6  预拉力对BFRP筋峰值荷载${F_{{\rm{max}}}}$及残余变形$D$的影响

    Figure  6.  Effect of pretension ratio on peak force ${F_{{\rm{max}}}}$ and residual deformation $D$ of BFRP tendon

    图  7  冲击能量对BFRP筋峰值荷载增长系数${I_{\rm{f}}}$及承载力残余系数${R_{\rm{f}}}$的影响

    Figure  7.  Effect of impact energy on peak force increase factor ${I_{\rm{f}}}$ and factor of residual bearing capacity ${R_{\rm{f}}}$ of BFRP tendon

    表  1  玄武岩纤维增强树脂基复合材料(BFRP)筋的力学性能[25]

    Table  1.   Mechanical properties of basalt fiber reinforced polymer (BFRP) tendon[25]

    TypeTensile strength/MPaLoad bearing capacity/kNElastic modulus/GPaUltimate strain/%Shear strength/MPa
    BFRP 1113.40 17.64 50.81 2.23 169.10
    下载: 导出CSV

    表  2  不同预拉力和冲击能量下BFRP试件耗能

    Table  2.   Energy consumption of BFRP specimens under different impact energies and pretension ratios

    $\lambda $/%${E_0}$/J${E_{{\rm{tot}}}}$/J${E_{{\rm{ab}}}}$/J${E_{{\rm{ab}}}}/{E_{{\rm{tot}}}}$
    2 12.76 13.32(0.79) 6.96(0.60) 0.52(0.01)
    19.14 20.15(0.12) 15.91(1.26) 0.79(0.06)
    25.52 26.94(0.20) 25.75(0.43) 0.96(0.01)
    31.90 34.33(0.15) 30.96(2.24) 0.90(0.06)
    10 12.76 13.97(0.08) 6.66(0.14) 0.48(0.01)
    19.14 20.69(0.11) 10.76(0.41) 0.52(0.02)
    25.52 27.40(0.18) 22.31(1.67) 0.81(0.06)
    31.90 34.06(0.16) 31.18(1.66) 0.92(0.05)
    20 12.76 13.79(0.01) 6.06(0.25) 0.44(0.02)
    19.14 20.49(0.04) 10.67(1.78) 0.52(0.09)
    25.52 27.29(0.19) 23.94(2.54) 0.88(0.09)
    31.90 34.07(0.29) 33.72(1.77) 0.99(0.05)
    30 12.76 13.88(0.63) 5.83(0.29) 0.42(0.00)
    19.14 20.50(0.10) 13.90(2.17) 0.68(0.11)
    25.52 27.21(0.23) 24.28(2.31) 0.89(0.08)
    31.90 33.98(0.09) 32.70(1.80) 0.96(0.05)
    Notes: $\lambda $—Ratio of the initial pretension to the load bearing capacity of the BFRP tendon; ${E_{\rm{0}}}$, ${E_{{\rm{tot}}}}$, ${E_{{\rm{ab}}}}$ and ${E_{{\rm{ab}}}}/{E_{{\rm{tot}}}}$—Initial impact energy, total impact energy, absorbed energy and energy absorption ratio of BFRP tendon, respectively; Values in the parentheses—Standard deviations.
    下载: 导出CSV

    表  3  不同冲击能量及预拉力下BFRP的抗冲击性能

    Table  3.   Impact performance of BFRP under different impact energies and pretension ratios

    $\lambda $/%${E_0}$/J${F_{\max }}$/kN${I_{\rm{f}}}$$D$/mm${t_{\rm{d}}}$/ms${T_{\rm{r}}}$/kN${R_{\rm{f}}}$
    2 12.76 3.27(0.12) 1.00 3.73(0.25) 21.01(0.92) 9.68(0.69) 0.55
    19.14 3.99(0.15) 1.22 6.04(0.72) 25.11 (0.35) 3.25(0.09) 0.18
    25.52 4.57(0.25) 1.40 9.94(0.23) 34.53 (2.17) 0.35(0.05) 0.02
    31.90 4.59(0.12) 1.40 18.94(1.18) 11.72 (0.40) 0(0) 0
    10 12.76 3.15(0.08) 1.00 3.00(1.55) 22.37 (0.59) 9.99(0.62) 0.57
    19.14 4.12(0.05) 1.31 3.14(0.21) 21.21(0.53) 6.35(0.75) 0.36
    25.52 4.50(0.2) 1.43 6.20(1.25) 26.05 (0.65) 3.20(0.45) 0.18
    31.90 4.63(0.42) 1.47 16.87(1.28) 12.75 (2.37) 0(0) 0
    20 12.76 3.17(0.04) 1.00 1.41(0.02) 21.06 (0.30) 10.14(0.50) 0.57
    19.14 4.12(0.08) 1.30 1.80(0.60) 20.71 (0.57) 6.33(0.78) 0.36
    25.52 4.28(0.14) 1.35 5.72(0.92) 27.82 (2.49) 2.62(0.83) 0.15
    31.90 4.68(0.26) 1.48 16.97(2.24) 13.69 (2.26) 0(0) 0
    30 12.76 3.16(0.09) 1.00 1.74(0.40) 19.90 (0.24) 10.81(0.47) 0.61
    19.14 4.10(0.02) 1.30 2.59(0.56) 21.38 (1.47) 5.60(0.42) 0.32
    25.52 4.21(0.37) 1.33 4.96(0.34) 24.10 (4.79) 0.65(0.27) 0.04
    31.90 4.51(0.16) 1.43 16.27(0.70) 11.95 (0.73) 0(0) 0
    Note: ${F_{\max }}$, ${I_{\rm{f}}}$, $D$, ${t_{\rm{d}}}$, ${T_{\rm{r}}}$ and ${R_{\rm{f}}}$—Peak force, peak force increase factor, residual deformation, impact time, residual load bearing capacity and factor of residual bearing capacity of BFRP tendon, respectively.
    下载: 导出CSV
  • [1] WANG X, WU Z. Evaluation of FRP and hybrid FRP cables for super long-span cable-stayed bridges[J]. Composite Structures,2010,92(10):2582-2590. doi: 10.1016/j.compstruct.2010.01.023
    [2] KAO C S, KOU C H, XIE X. Static instability analysis of long-span cable-stayed bridges with carbon fiber composite cable under wind load[J]. Journal of Applied Science and Engineering,2006,9(2):89-95.
    [3] ZHANG K, FANG Z, NANNI A, et al. Experimental study of a large-scale ground anchor system with frp tendon and RPC grout medium[J]. Journal of Composites for Construction,2015,19(4):04014073. doi: 10.1061/(ASCE)CC.1943-5614.0000537
    [4] YANG Y, WANG X, WU Z. Long-span cable-stayed bridge with hybrid arrangement of FRP cables[J]. Composite Structures,2020,237:111966. doi: 10.1016/j.compstruct.2020.111966
    [5] FANG Z, ZHANG K, TU B. Experimental investigation of a bond-type anchorage system for multiple FRP tendons[J]. Engineering Structures,2013,57:364-373. doi: 10.1016/j.engstruct.2013.09.038
    [6] ZHOU J, LIAO B, SHI Y, et al. Low-velocity impact behavior and residual tensile strength of CFRP laminates[J]. Composites Part B: Engineering,2019,161:300-313. doi: 10.1016/j.compositesb.2018.10.090
    [7] CAPRINO G, LOPRESTO V, SCARPONI C, et al. Influence of material thickness on the response of carbon-fabric/epoxy panels to low velocity impact[J]. Composites Science and Technology,1999,59(15):2279-2286. doi: 10.1016/S0266-3538(99)00079-2
    [8] AKTAŞ M, ATAS C, İçTEN B M, et al. An experimental investigation of the impact response of composite laminates[J]. Composite Structures,2009,87(4):307-313. doi: 10.1016/j.compstruct.2008.02.003
    [9] ATAS C, SAYMAN O. An overall view on impact response of woven fabric composite plates[J]. Composite Structures,2008,82(3):336-345. doi: 10.1016/j.compstruct.2007.01.014
    [10] KHALILI S M R, MITTAL R K, MOHAMMAD P N. Analysis of fiber reinforced composite plates subjected to transverse impact in the presence of initial stresses[J]. Composite Structures,2007,77(2):263-268. doi: 10.1016/j.compstruct.2005.08.027
    [11] KÖRBELIN J, DERRA M, FIEDLER B. Influence of temperature and impact energy on low velocity impact damage severity in CFRP[J]. Composites Part A: Applied Science and Manufacturing,2018,115:76-87. doi: 10.1016/j.compositesa.2018.09.010
    [12] CANTWELL W J, MORTON J. Comparison of the low and high velocity impact response of cfrp[J]. Composites,1989,20(6):545-551. doi: 10.1016/0010-4361(89)90913-0
    [13] CANTWELL W J, MORTON J. The influence of varying projectile mass on the impact response of CFRP[J]. Composite Structures,1989,13(2):101-114. doi: 10.1016/0263-8223(89)90048-2
    [14] HEIMBS S, BERGMANN T, SCHUELER D, et al. High velocity impact on preloaded composite plates[J]. Composite Structures,2014,111:158-168. doi: 10.1016/j.compstruct.2013.12.031
    [15] FANG Y, FANG Z, JIANG R, et al. Transverse static and low-velocity impact behavior of CFRP wires under pretension[J]. Journal of Composites for Construction,2019,23(5):04019041. doi: 10.1061/(ASCE)CC.1943-5614.0000970
    [16] WHITTINGHAM B, MARSHALL I H, MITREVSKI T, et al. The response of composite structures with pre-stress subject to low velocity impact damage[J]. Composite Structures,2004,66(1):685-698.
    [17] XIANG Y, FANG Z, WANG C, et al. Experimental investigations on impact behavior of CFRP cables under pretension[J]. Journal of Composites for Construction,2017,21(2):04016087. doi: 10.1061/(ASCE)CC.1943-5614.0000745
    [18] SAGHAFI H, MINAK G, ZUCCHELLI A. Effect of preload on the impact response of curved composite panels[J]. Composites Part B: Engineering,2014,60:74-81. doi: 10.1016/j.compositesb.2013.12.026
    [19] SCHUELER D, TOSO-PENTECÔTE N, VOGGENREITER H. Effects of static preloads on the high velocity impact response of composite plates[J]. Composite Structures,2016,153:549-556. doi: 10.1016/j.compstruct.2016.06.062
    [20] GUILLAUD N, FROUSTEY C, DAU F, et al. Impact response of thick composite plates under uniaxial tensile preloading[J]. Composite Structures,2015,121:172-181. doi: 10.1016/j.compstruct.2014.11.021
    [21] 王计真, 刘小川. 考虑面内载荷的复合材料层合板冲击性能[J]. 复合材料学报, 2020, 37(8):1868-1874.

    WANG Jizhen, LIU Xiaochuan. Impact resistance of composite panels under in-plane preloading[J]. Acta Materiae Compositae Sinica,2020,37(8):1868-1874(in Chinese).
    [22] MINES R A W, LI Q M. Static behaviour of transversely loaded CFRP laminate panels subject to in-plane tension[J]. Strain,2000,36(2):71-80. doi: 10.1111/j.1475-1305.2000.tb01176.x
    [23] 向宇, 方志, 王常林. 碳纤维拉索及其锚固系统抗冲击性能试验研究[J]. 土木工程学报, 2015, 48(12):82-90.

    XIANG Yu, FANG Zhi, WANG Changlin. Experimental study on impact behaviors of CFRP cable and its anchoring system[J]. China Civil Engineering Journal,2015,48(12):82-90(in Chinese).
    [24] ASTM Committee. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M—2015[S]. US: West Conshohocken, 2015.
    [25] 徐旭锋. BFRP拉索筋的动态及高温力学性能研究[D]. 长沙: 湖南大学, 2020.

    XU Xufeng. Mechanical properties of basalt fiber reinforced polymer (BFRP) tendon at varying strain rates and elevated temperatures[D]. Changsha: Hunan University, 2020(in Chinese).
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  175
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 修回日期:  2021-02-24
  • 录用日期:  2021-03-15
  • 网络出版日期:  2021-03-25
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回