留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于冲击损伤的复合材料气瓶铺层顺序优化设计

耿发贵 李强 宋薛思 刘岩 刘培启 杨燕

耿发贵, 李强, 宋薛思, 等. 基于冲击损伤的复合材料气瓶铺层顺序优化设计[J]. 复合材料学报, 2022, 39(2): 777-787. doi: 10.13801/j.cnki.fhclxb.20210323.001
引用本文: 耿发贵, 李强, 宋薛思, 等. 基于冲击损伤的复合材料气瓶铺层顺序优化设计[J]. 复合材料学报, 2022, 39(2): 777-787. doi: 10.13801/j.cnki.fhclxb.20210323.001
GENG Fagui, LI Qiang, SONG Xuesi, et al. Optimal design of laying sequence of composite gas cylinders based on impact damage[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 777-787. doi: 10.13801/j.cnki.fhclxb.20210323.001
Citation: GENG Fagui, LI Qiang, SONG Xuesi, et al. Optimal design of laying sequence of composite gas cylinders based on impact damage[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 777-787. doi: 10.13801/j.cnki.fhclxb.20210323.001

基于冲击损伤的复合材料气瓶铺层顺序优化设计

doi: 10.13801/j.cnki.fhclxb.20210323.001
基金项目: 国家重点研发计划资助(2017YFC0805603);中央高校基本科研业务费专项资金(DUT20JC17)
详细信息
    通讯作者:

    刘培启,博士,教授,博士生导师,研究方向为流体机械特种装备技术及移动式压力容器风险防控与治理  E-mail: lpq21cn@dlut.edu.cn

    杨燕,博士,讲师,研究方向为机器学习及优化计算 E-mail: xuemeng62038216@163.com

  • 中图分类号: TB332;TH49

Optimal design of laying sequence of composite gas cylinders based on impact damage

  • 摘要: 基于瞬态动力学理论和遗传优化算法,以提高抗冲击损伤能力为优化目标对复合材料气瓶的铺层顺序进行优化。遗传算法利用MATLAB软件实现,复合材料气瓶冲击损伤分析采用ANSYS进行,通过两个软件之间的信息传递,实现优化计算。以铝内胆复合材料气瓶为算例进行优化,结果表明,在同一冲击能量下,优化后的气瓶基体破裂面积和基体破裂层数均大幅减小,剩余爆破压力显著提高。当冲击能量为60 J时,该气瓶表面基体破裂面积减少了8.8%,基体破裂层数减少了14.3%,剩余爆破压力值提高了9.6%。本文建立的优化算法可以用于复合材料气瓶铺层优化设计。

     

  • 图  1  复合材料气瓶冲击损伤分析流程

    Figure  1.  Impact damage analysis flow of composite cylinder

    F1 and F2—Damage factors of matrix and fiber, respectively

    图  2  复合材料气瓶剩余爆破压力分析流程

    Figure  2.  Residual burst pressure analysis process of composite cylinder

    P—Applied internal pressure; ΔP—Pressure increment

    图  3  铝合金应力-应变曲线

    Figure  3.  Stress-strain curve of aluminum alloy

    图  4  气瓶冲击模型

    Figure  4.  Impact model of gas cylinder

    V—Velocity of impact on the cylinder

    图  5  复合材料气瓶冲击损伤形态

    Figure  5.  Impact damage pattern of composite cylinder

    图  6  复合材料气瓶不同尺寸单元的基体破裂面积

    Figure  6.  Matrix fracture area of composite cylinder with different size elements

    图  7  气瓶损伤情况

    Figure  7.  Cylinder damage

    图  8  水压爆破试验压力与进水量曲线

    Figure  8.  Curves of pressure and water inflow for hydraulic blasting test

    图  9  不同剩余爆破压力下数值模拟气瓶失效过程

    Figure  9.  Numerical simulation of gas cylinder failure process under different residual burst pressures

    图  10  复合材料气瓶铺层优化流程图

    Figure  10.  Flow chart of laying optimization process of composite cylinder

    GA—Genetic algorithm; FE—Finite element

    图  11  复合材料气瓶最外侧缠绕层应力分布

    Figure  11.  Stress distribution of the outermost winding layer of composite cylinder

    图  12  复合材料气瓶最外侧缠绕层基体损伤形态

    Figure  12.  Damage morphology of the outermost winding layer matrix of composite cylinder

    图  13  复合材料气瓶铺层优化迭代过程

    Figure  13.  Laying optimization iterative process of composite cylinder

    图  14  60 J冲击能量下优化前后复合材料气瓶基体破裂面积对比

    Figure  14.  Comparison of the fracture area of the matrix of composite cylinder before and after optimization under 60 J impact energy

    图  15  不同冲击能量下优化前后复合材料气瓶基体破裂面积对比

    Figure  15.  Comparison of matrix fracture area of composite cylinder before and after optimization under different impact energies

    图  16  不同冲击能量下优化前后复合材料气瓶基体破裂层数对比

    Figure  16.  Comparison of the number of matrix fractured layers of composite cylinder before and after optimization under different impact energies

    图  18  不同冲击能量下优化前后复合材料气瓶剩余爆破压力对比

    Figure  18.  Comparison of residual burst pressure of composite cylinder before and after optimization under different impact energies

    图  17  60 J能量冲击后不同剩余爆破压力下气瓶筒体应力分布

    Figure  17.  Stress distribution of cylinder under different residual burst pressures after 60 J impact energy

    表  1  Camanho参数退化

    Table  1.   Camanho parameter degradation

    Failure modeCamanho degradation rule
    Matrix tensile or shear cracking $E_{yy}' = 0.2{E_{yy}}$;$G_{xy}' = 0.2{G_{xy}}$;$G_{yz}' = 0.2{G_{yz}}$
    Matrix compression or shear cracking $E_{yy}' = 0.4{E_{yy}}$;$ G_{xy}' = 0.4{G_{xy} } $;$ G_{yz}' = 0.4{G_{yz} } $
    Matrix fiber shearing $G_{xy}' = v_{xy}' = 0$
    Fiber tensile fracture $E_{xx}' = 0.07{E_{xx}}$
    Fiber compressive fracture $E_{xx}' = 0.14{E_{xx}}$
    Notes: Exx, Eyy and Ezz—Young’s modulus of the composite layer in x, y, z direction, respectively; ν and G—Poisson’s ratio and shear modulus, respectively.
    下载: 导出CSV

    表  2  T700碳纤维环氧树脂基复合材料性能

    Table  2.   Mechanical properties of T700/epoxy composite

    Exx/GPaEyy/GPaEzz/GPaνxyνyzνxz
    154.1 11.41 11.41 0.49 0.33 0.49
    Gxy/GPa Gyz/GPa Gxz/GPa Xt/MPa Yt/MPa Sxy/MPa
    7.092 3.792 7.092 2360 66 129
    Notes: Xt, Yt—Tensile strength in x, y direction, respectively; Sxy—Shear strength.
    下载: 导出CSV
  • [1] KIM S W, KIM E H, JEONG M S. Damage evaluation and strain monitoring for composite cylinders using tin-coated FBG sensors under low-velocity impacts[J]. Composites Part B: Engineering,2015,74:13-22. doi: 10.1016/j.compositesb.2015.01.004
    [2] CHOI B H, KWON I B. Damage mapping using strain distribution of an optical fiber embedded in a composite cylinder after low-velocity impacts[J]. Composites Part B: Engineering,2019,173:107009. doi: 10.1016/j.compositesb.2019.107009
    [3] 李小明, 邱桂杰, 刘锦霞. 某型复合材料气瓶优化设计[J]. 纤维复合材料, 2007, 3(1):21-23. doi: 10.3969/j.issn.1003-6423.2007.01.006

    LI Xiaoming, QIU Guijie, LIU Jinxia. Optimal design of a certain type of composite gas cylinder[J]. Fiber Compo-site Materials,2007,3(1):21-23(in Chinese). doi: 10.3969/j.issn.1003-6423.2007.01.006
    [4] 黄家康, 岳红军, 董永祺. 复合材料成型技术[M]. 北京: 化学工业出版社, 1999.

    HUANG Jiakang, YUE Hongjun, DONG Yongqi. Composite material molding technology[M]. Beijing: Chemical Industry Press, 1999(in Chinese).
    [5] 王晓宏, 张博明, 刘长喜, 等. 纤维缠绕复合材料压力容器渐进损伤分析[J]. 计算力学学报, 2009, 3:446-452.

    WANG Xiaohong, ZHANG Boming, LIU Changxi, et al. Progressive damage analysis of filament wound composite pressure vessels[J]. Chinese Journal of Computational Mechanics,2009,3:446-452(in Chinese).
    [6] 王帅培, 王栋. 无人机复合材料尾翼结构的优化设计[J]. 机械研究与应用, 2020, 33(1):133-135, 141.

    WANG Shuaipei, WANG Dong. Optimal design of UAV composite tail wing structure[J]. Mechanical Research and Application,2020,33(1):133-135, 141(in Chinese).
    [7] 王慧敏. 复合纤维风机叶片铺层结构优化设计及应用[D]. 呼和浩特: 内蒙古工业大学, 2014.

    WANG Huimin. Optimal design and application of compo-site fiber fan blade layer structure[D]. Huhhot: Inner Mongolia University of Technology, 2014(in Chinese).
    [8] RICHE R, HAFTKA R. Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm[J]. AIAA Journal,1993,31(5):951-956. doi: 10.2514/3.11710
    [9] NAGENDRA S, HAFTKA R, GURDAL Z. Stacking sequence optimization of simply supported laminates with stability and strain constraints[J]. 1992, 30(8): 2132-2137.
    [10] KIM C U, KANG J H, HONG C S, et al. Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm[J]. Composite Structures,2005,67(4):443-452. doi: 10.1016/j.compstruct.2004.02.003
    [11] KIM C U, HONG C S, KIM C G, et al. Optimal design of filament wound type 3 tanks under internal pressure using a modified genetic algorithm[J]. Composite Structures,2005,71(1):16-25. doi: 10.1016/j.compstruct.2004.09.006
    [12] LIU Pengfei, XU Ping, ZHENG Jinyang. Artificial immune system for optimal design of composite hydrogen storage vessel[J]. Computational Materials Science,2009,47(1):261-267. doi: 10.1016/j.commatsci.2009.07.015
    [13] XU Ping, ZHENG Jinyang, CHEN Honggang, et al. Optimal design of high pressure hydrogen storage vessel using an adaptive genetic algorithm[J]. International Journal of Hydrogen Energy,2010,35(7):2840-2846. doi: 10.1016/j.ijhydene.2009.05.008
    [14] JIAO Weicheng, NIU Yue, HAO Lifeng, et al. Optimal design of lightweight composite pressure vessel by using artificial immune algorithm[J]. Polymers & Polymer Composites,2014,22(3):323-328.
    [15] LIN DTW, HSIEH J C, CHINDAKHAM N, HAI P D. Optimal design of a composite laminate hydrogen storage vessel[J]. International Journal of Energy Research,2013,37(7):761-768. doi: 10.1002/er.2983
    [16] 颜标, 郭凯特, 校金友. 考虑渐进损伤的纤维缠绕复合材料圆筒铺层顺序优化设计[J]. 固体火箭技术, 2020, 43(4):468-475.

    YAN Biao, GUO Kaite, XIAO Jinyou. Optimization design of fiber-wound composite cylinder layering sequence considering progressive damage[J]. Solid Rocket Technology,2020,43(4):468-475(in Chinese).
    [17] VAFAEESEFAT A. Optimization of composite pressure vessels with metal liner by adaptive response surface method[J]. Journal of Mechanical Science and Technology,2011,25(11):2811-2816. doi: 10.1007/s12206-011-0721-4
    [18] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials,1973,7(4):448-464. doi: 10.1177/002199837300700404
    [19] WANG Zewu, ZHANG Guojin, LIU Peiqi, et al. Pregressive damage analysis of full-wrapped composite gas cylinder under overload condition and prediction of its bursting pressure[J]. Strength, Fracture and Complexity: An International Journal,2015,9(2):175-185.
    [20] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials,1999,33(24):2248-2280. doi: 10.1177/002199839903302402
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  1049
  • HTML全文浏览量:  464
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-02
  • 修回日期:  2021-03-05
  • 录用日期:  2021-03-15
  • 网络出版日期:  2021-03-25
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回