留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP加固钢板的粘结界面剥离破坏

李腾 宁志华 吴嘉瑜

李腾, 宁志华, 吴嘉瑜. CFRP加固钢板的粘结界面剥离破坏[J]. 复合材料学报, 2021, 38(12): 4090-4105. doi: 10.13801/j.cnki.fhclxb.20210317.003
引用本文: 李腾, 宁志华, 吴嘉瑜. CFRP加固钢板的粘结界面剥离破坏[J]. 复合材料学报, 2021, 38(12): 4090-4105. doi: 10.13801/j.cnki.fhclxb.20210317.003
LI Teng, NING Zhihua, WU Jiayu. Interfacial debonding failure of CFRP-strengthened steel structures[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4090-4105. doi: 10.13801/j.cnki.fhclxb.20210317.003
Citation: LI Teng, NING Zhihua, WU Jiayu. Interfacial debonding failure of CFRP-strengthened steel structures[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4090-4105. doi: 10.13801/j.cnki.fhclxb.20210317.003

CFRP加固钢板的粘结界面剥离破坏

doi: 10.13801/j.cnki.fhclxb.20210317.003
基金项目: 国家自然科学基金(51908271);广东省自然科学基金(2018A0303130128);中国博士后科学基金(2019M651655)
详细信息
    通讯作者:

    宁志华,博士,副教授,硕士生导师,研究方向为复合材料损伤与断裂分析 Email:tningzhihua@jnu.edu.cn

  • 中图分类号: TB333

Interfacial debonding failure of CFRP-strengthened steel structures

  • 摘要: II型界面破坏是碳纤维增强树脂复合材料(CFRP)加固钢板常见的破坏方式之一。为揭示CFRP加固钢板粘结界面破坏的力学机制,开展了单剪试验和双剪试验分别研究了CFRP-钢板界面力学性能及破坏过程,并采用数字图像相关技术(DIC)对CFRP的轴向应变分布进行监测。对比两个试验的破坏模式发现,双剪试件的粘结界面主要发生II型破坏,界面破坏的主要力学原因是剪应力;而存在偏心加载的单剪试件,粘结界面上的剪应力和偏心加载引起的弯矩共同作用,使粘结界面发生I/II型混合模式失效。在II型破坏模式下,不同粘结长度的极限荷载及粘结滑移值随着粘结长度的增大而增大,但当粘结长度超过有效粘结长度后,极限荷载及极限滑移值基本保持不变。而在所讨论的偏心加载引起的界面I/II型混合破坏模式下,不同粘结长度的极限荷载基本不变。基于试验数据得到的双线性粘结-滑移关系建立了有限元模型,对CFRP加固钢板的II型界面粘结破坏行为进行分析,数值模拟结果与试验结果吻合较好。

     

  • 图  1  双剪搭接接头

    Figure  1.  Double-lap joint

    P—Tensile load; τ(y)—Interfacial shear stress

    图  2  试验装置

    Figure  2.  Experimental setup

    图  3  CFRP加固钢板的破坏模式

    Figure  3.  Failure modes of CFRP-strengthened steel plate

    图  4  CFRP加固钢板双剪试件界面破坏模式

    Figure  4.  Interfacial failure modes of double-lap joint specimen of CFRP-strengthened steel plate

    图  5  通过偏心拉伸实现的CFRP加固钢板单剪搭接接头

    Figure  5.  Single-lap joint of CFRP-strengthened steel plate subjected to eccentric loading

    M—Bending moment

    图  6  CFRP加固钢板单剪试件破坏过程

    Figure  6.  Failure process of single-lap joint of CFRP-strengthened steel plate

    图  7  CFRP加固钢板单剪试件胶层/CFRP界面脱粘

    Figure  7.  Adhesion failure at adhesive/CFRP interface of single-lap joint of CFRP-strengthened steel plate

    图  8  CFRP加固钢板双剪试件的荷载-位移曲线

    Figure  8.  Load-displacement curves of double-lap joints of CFRP-strengthened steel plate

    图  9  CFRP加固钢板单剪试件的荷载-位移曲线

    Figure  9.  Load-displacement curves of single-lap joints of CFRP-strengthened steel plate

    图  10  C-S-150-1试件的荷载-位移曲线及不同加载时刻CFRP轴向应变云图

    Figure  10.  Load-displacement curve and axial strain contours in CFRP of specimen C-S-150-1

    图  11  C-S-200-1试件的荷载-位移曲线及不同加载时刻CFRP轴向应变云图

    Figure  11.  Load-displacement curve and axial strain contours in CFRP of specimen C-S-200-1

    图  12  C-S-250-1试件的荷载-位移曲线及不同加载时刻CFRP轴向应变云图

    Figure  12.  Load-displacement curve and axial strain contours in CFRP of specimen C-S-250-1

    图  13  C-S-150-1试件的CFRP轴向应变分布曲线

    Figure  13.  Axial strain distribution curves in CFRP of specimen C-S-150-1

    图  14  C-S-200-1试件的CFRP轴向应变分布曲线

    Figure  14.  Axial strain distribution curves in CFRP of specimen C-S-200-1

    图  15  C-S-250-1试件的CFRP轴向应变分布曲线

    Figure  15.  Axial strain distribution curves in CFRP of specimen C-S-250-1

    图  16  C-S-150-1试件的荷载-滑移曲线和界面剪应力分布曲线

    Figure  16.  Load-slip curve and interfacial shear stress distribution curves of specimen C-S-150-1

    图  17  C-S-200-1试件的荷载-滑移曲线和界面剪应力分布曲线

    Figure  17.  Load-slip curve and interfacial shear stress distribution curves of specimen C-S-200-1

    图  18  C-S-250-1试件荷载-滑移曲线和界面剪应力分布曲线

    Figure  18.  Load-slip curve and interfacial shear stress distribution curves of specimen C-S-250-1

    图  19  CFRP加固钢板粘结-滑移曲线

    Figure  19.  Bond-slip curves of CFRP-strengthened steel plate

    τmax−Peak shear stress; δ1−Corresponding slip to peak shear stress; δf−Ultimate slip

    图  20  CFRP加固钢板有限元模型

    Figure  20.  Finite element model of CFRP-strengthened steel plate

    图  21  CFRP轴向应变云图

    Figure  21.  Axial strain contours of CFRP

    图  22  C-S-150-1试件荷载-滑移曲线对比

    Figure  22.  Comparison of load-slip curves of specimen C-S-150-1

    图  23  C-S-150-1试件界面剪应力分布对比

    Figure  23.  Comparison of interfacial shear stress distribution of specimen C-S-150-1

    表  1  材料力学性能

    Table  1.   Material properties

    MaterialYoung’s modulus/GPaTension strength/MPaShear strength/MPaYield strength/MPaPoisson’s ratioElongation/%
    Q235 206 400 235 0.3 29.4
    CFRP 150 1 230 0.28 1.6
    Adhesive 3.2 30 17 0.35 1.32
    Note: CFRP—Carbon fiber reinforce polymer.
    下载: 导出CSV

    表  2  不同粘结长度CFRP加固钢板双剪试件的极限载荷及失效模式

    Table  2.   Ultimate load and failure modes of double-lap joint specimens of CFRP-strengthened steel plate with different bond lengths

    SpecimenMeasured
    adhesive thickness/mm
    Bond
    length/mm
    Length of
    steel plate/mm
    Ultimate
    load/kN
    Failure
    mode
    C-S-80-1 1.01 80 200 45.76 C+D
    C-S-80-2 0.99 80 200 45.32 C+D
    C-S-80-3 0.92 80 200 44.73 C+D
    C-S-80-4 0.91 80 200 45.12 C+D
    C-S-120-1 1.02 120 250 47.55 C+D+E
    C-S-120-2 1.03 120 250 47.87 C+D
    C-S-120-3 0.93 120 250 46.92 C+D
    C-S-120-4 0.90 120 250 47.38 C+D
    C-S-150-1 1.03 150 300 50.74 C+D
    C-S-150-2 1.02 150 300 51.42 C+D
    C-S-150-3 0.93 150 300 50.39 C+D
    C-S-150-4 0.96 150 300 50.79 C+D
    C-S-200-1 0.97 200 350 51.23 C+D
    C-S-200-2 1.09 200 350 52.21 C+D
    C-S-200-3 1.10 200 350 51.07 C+D
    C-S-200-4 0.97 200 350 51.78 C+D
    C-S-250-1 0.99 250 350 51.92 C+D
    C-S-250-2 1.03 250 350 51.08 C+D
    C-S-250-3 0.98 250 350 52.03 C+D
    C-S-250-4 0.96 250 350 51.01 C+D
    Notes: C—Cohesion failure in adhesive; D—Adhesion failure at adhesive/CFRP interface; E—Adhesion failure at adhesive/steel interface; C-S—CFRP-steel.
    下载: 导出CSV

    表  3  不同粘结长度CFRP加固钢板双剪试件的粘结-滑移本构参数

    Table  3.   Parameters in bond-slip law for double-lap joint specimens of CFRP-strengthened steel plate with different bond lengths

    Specimen${\tau _{{\rm{max}}}}$/MPa${\delta _1}$/mm${\delta _{\rm{f}}}$/mm${G_{\rm{f}}}$/(N·mm−1)${l_{\rm{e}}}$/mm
    C-S-150-1 14.6 0.065 0.178 1.299 78.56
    C-S-150-2 14.1 0.067 0.184 1.297 81.23
    C-S-150-3 13.7 0.063 0.177 1.212 80.52
    C-S-150-4 13.4 0.061 0.174 1.165 80.52
    C-S-200-1 14.5 0.062 0.174 1.261 77.61
    C-S-200-2 14.0 0.068 0.183 1.281 81.58
    C-S-200-3 13.6 0.059 0.170 1.156 78.87
    C-S-200-4 13.7 0.060 0.169 1.157 78.64
    C-S-250-1 14.2 0.070 0.182 1.789 81.27
    C-S-250-2 14.3 0.069 0.184 1.823 81.07
    C-S-250-3 13.6 0.043 0.165 1.124 74.38
    C-S-250-4 13.7 0.093 0.154 1.054 83.15
    Notes: Gf—Fracture energy; le—Effective bond length.
    下载: 导出CSV
  • [1] 岳清瑞, 侯兆新. 对我国钢结构发展的思考[J]. 工程建设标准化, 2017(5):48-56.

    YUE Qingrui, HOU Zhaoxin. Thoughts on the development of steel structures in China[J]. Standardization of Engineering Construction,2017(5):48-56(in Chinese).
    [2] 程璐, 冯鹏, 徐善华, 等. CFRP加固钢结构抗疲劳技术研究综述[J]. 玻璃钢/复合材料, 2013(4):58-62.

    CHENG Lu, FENG Peng, XU Shanhua, et al. Review on anti-fatigue technology of steel structure strengthened by CFRP[J]. Fiber Reinforced Plastics/Composites,2013(4):58-62(in Chinese).
    [3] HOSSEINI A, MOSTOFINEJAD D. Effective bond length of FRP-to-concrete adhesively-bonded joints: Experimental evaluation of existing models[J]. International Journal of Adhesion & Adhesives,2014,48:150-158.
    [4] ZHANG P, LEI D, REN Q, et al. Experimental and numerical investigation of debonding process of the FRP plate-concrete interface[J]. Construction and Building Materials,2019,235:117457.
    [5] 李趁趁, 于爱民, 高丹盈, 等. 侵蚀环境下FRP条带加固锈蚀钢筋混凝土圆柱轴心受压试验[J]. 复合材料学报, 2020, 37(8):2015-2028.

    LI Chenchen, YU Aimin, GAO Danying, et al. Experimental study on axial compression of corroded reinforced concrete columns strengthened with FRP strips under erosion environment[J]. Acta Materiae Compositae Sinica,2020,37(8):2015-2028(in Chinese).
    [6] SEN R. Advances in the application of FRP for repairing corrosion damage[J]. Progress in Structural Engineering & Materials,2003,5(2):99-113.
    [7] ZHAO X L, ZHANG L. State-of-the-art review on FRP strengthened steel structures[J]. Steel Construction,2007,29(8):1808-1823.
    [8] TENG J G, YU T, FERNANDO D. Strengthening of steel structures with fiber-reinforced polymer composites[J]. Journal of Constructional Steel Research,2012,78:131-143. doi: 10.1016/j.jcsr.2012.06.011
    [9] BOCCIARELLI M, COLOMBI P, FAVA G, et al. Fatigue performance of tensile steel members strengthened with CFRP plates[J]. Steel Construction,2009,87(4):334-343.
    [10] YU T, FERNANDO D, TENG J G, et al. Experimental study on CFRP-to-steel bonded interfaces[J]. Composites Part B: Engineering,2012,43(5):2279-2289. doi: 10.1016/j.compositesb.2012.01.024
    [11] WU C, ZHAO X L, CHIU W K, et al. Effect of fatigue loading on the bond behaviour between UHM CFRP plates and steel plates[J]. Composites Part B: Engineering,2013,50:344-353. doi: 10.1016/j.compositesb.2013.02.040
    [12] WANG H T, WU G, JIANG J B. Fatigue behavior of cracked steel plates strengthened with different CFRP systems and configurations[J]. Journal of Composites for Construction,2016,20(3):04015078. doi: 10.1061/(ASCE)CC.1943-5614.0000647
    [13] NGUYEN T C, BAI Y, ZHAO X L, et al. Curing effects on steel/CFRP double strap joints under combined mechanical load, temperature and humidity[J]. Construction & Building Materials,2013,40:899-907.
    [14] GRAMMATIKOS S A, JONES R G, EVERNDEN M, et al. Thermal cycling effects on the durability of a pultruded GFRP material for off-shore civil engineering structures[J]. Composite Structures,2016,153:297-310. doi: 10.1016/j.compstruct.2016.05.085
    [15] MOHSEN H, REZA H, MOHAMMAD AL-E. Durability of CFRP/steel joints under cyclic wet-dry and freeze thaw conditions[J]. Composites Part B: Engineering,2017,126:211-226. doi: 10.1016/j.compositesb.2017.06.011
    [16] WANG Y, ZHENG Y, LI J, et al. Experimental study on tensile behaviour of steel plates with centre hole strengthened by CFRP plates under marine environment[J]. International Journal of Adhesion and Adhesives,2018:18-26.
    [17] BISCAIA H C, CHASTRE C. Theoretical analysis of fracture in double overlap bonded joints with FRP composites and thin steel plates[J]. Engineering Fracture Mechanics,2018:435-460.
    [18] CERONI F, IANNICIELLO, et al. Bond behavior of FRP carbon plates externally bonded over steel and concrete elements: Experimental outcomes and numerical investigations[J]. Composites Part B: Engineering, 2016, 92: 434-446.
    [19] HE J, XIAN G. Debonding of CFRP-to-steel joints with CFRP delamination[J]. Composite Structures,2016,153:12-20. doi: 10.1016/j.compstruct.2016.05.100
    [20] PANG Y, WU G, WANG H, et al. Experimental study on the bond behavior of CFRP-steel interfaces under quasi-static cyclic loading[J]. 2019, 140: 426-437.
    [21] LIU M, DAWOOD M. A closed-form solution of the interfacial stresses and strains in steel beams strengthened with externally bonded plates using ductile adhesives[J]. Engineering Structures,2018,154:66-77. doi: 10.1016/j.engstruct.2017.10.054
    [22] YANG, Y M, SILVA, et al. CFRP-to-steel bonded joints subjected to cyclic loading: An experimental study[J]. Composites Part B: Engineering,2018,146:28-41. doi: 10.1016/j.compositesb.2018.03.039
    [23] 杨怡, 黄炽辉, 吴作栋. 基于双剪实验的CFRP-钢板界面粘结性能研究[J]. 中山大学学报(自然科学版):1-9. [2020-11-05]. https://doi.org/10.13471/j.cnki.acta.snus.2020.07.14.2020B082.

    YANG Yi, HUANG Chihui, WU Zuodong. Study on bonding performance of CFRP-steel plate interface based on double shear test[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni (Natural Science):1-9. [2020-11-05]. https://doi.org/10.13471/j.cnki.acta.snus.2020.07.14.2020B082(in Chinese).
    [24] CARLONI C, SUBRAMANIAM K V. Direct determination of cohesive stress transfer during debonding of FRP from concrete[J]. Composite Structures,2010,93(1):184-192. doi: 10.1016/j.compstruct.2010.05.024
    [25] WANG H T, WU G, DAI Y T, et al. Experimental study on bond behavior between CFRP plates and steel substrates using digital image correlation[J]. Journal of Composites for Construction,2016,20(6):04016054. doi: 10.1061/(ASCE)CC.1943-5614.0000701
    [26] YANG Y, BISCAIA H, CHASTRE C, et al. Bond characteristics of CFRP-to-steel joints[J]. Journal of Constructional Steel Research,2017,138:401-419. doi: 10.1016/j.jcsr.2017.08.001
    [27] ARDALAN H, ELYAS G, MATTHIAS W, et al. Short-term bond behavior and debonding capacity of prestressed CFRP composites to steel substrate[J]. Engineering Structures,2018,176:935-947. doi: 10.1016/j.engstruct.2018.09.025
    [28] LU X Z, TENG J G, YE L P, et al. Bond-slip models for FRP sheets/plates bonded to concrete[J]. Engineering Structures,2005,27(6):920-937. doi: 10.1016/j.engstruct.2005.01.014
    [29] YUAN H, TENG J G, SERACINO R, et al. Full-range behavior of FRP-to-concrete bonded joints[J]. Engineering Structures,2003,26(5):553-565.
  • 加载中
图(23) / 表(3)
计量
  • 文章访问数:  1275
  • HTML全文浏览量:  474
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 录用日期:  2021-03-10
  • 网络出版日期:  2021-03-18
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回