留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

体外预应力无腹筋超高性能混凝土梁的抗剪性能试验探索

姜海波 冯家辉 肖杰 田月强 孙向东 陈志荣

姜海波, 冯家辉, 肖杰, 等. 体外预应力无腹筋超高性能混凝土梁的抗剪性能试验探索[J]. 复合材料学报, 2022, 39(2): 707-717. doi: 10.13801/j.cnki.fhclxb.20210316.001
引用本文: 姜海波, 冯家辉, 肖杰, 等. 体外预应力无腹筋超高性能混凝土梁的抗剪性能试验探索[J]. 复合材料学报, 2022, 39(2): 707-717. doi: 10.13801/j.cnki.fhclxb.20210316.001
JIANG Haibo, FENG Jiahui, XIAO Jie, et al. Experimental study on shear behavior of externally prestressed ultra-high performance concrete beams without stirrups[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 707-717. doi: 10.13801/j.cnki.fhclxb.20210316.001
Citation: JIANG Haibo, FENG Jiahui, XIAO Jie, et al. Experimental study on shear behavior of externally prestressed ultra-high performance concrete beams without stirrups[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 707-717. doi: 10.13801/j.cnki.fhclxb.20210316.001

体外预应力无腹筋超高性能混凝土梁的抗剪性能试验探索

doi: 10.13801/j.cnki.fhclxb.20210316.001
基金项目: 国家自然科学基金(51778150;51808133);广东省大学生科技创新培育专项资金(pdjh2020b0179)
详细信息
    通讯作者:

    肖杰,博士,讲师,研究方向为酸性环境中混凝土材料的力学性能和耐久性研究等 E-mail: xiaojie2017@gdut.edu.cn

  • 中图分类号: TU375;TB332

Experimental study on shear behavior of externally prestressed ultra-high performance concrete beams without stirrups

  • 摘要: 为研究超高性能混凝土(Ultra-high performance concrete,UHPC)无腹筋梁的抗剪性能,本次试验共制作9根体外预应力无腹筋UHPC梁,试验参数包括预应力的大小、剪跨比、纵向配筋率和钢纤维掺量,通过四点加载方法分析试验构件的破坏形态、开裂强度和极限强度。试验结果表明:无预应力无腹筋UHPC梁在剪跨比为1.0加载时发生弯曲破坏,设置钢绞线25%极限强度张拉值使无腹筋UHPC梁的正截面抗弯能力得到强化,弯矩增幅为157%,使试验梁从弯曲破坏转变为剪切破坏。张拉25%和40%控制应力的UHPC梁的开裂荷载分别提高了1.2倍和2.6倍,有效抑制了裂缝的形成。体外预应力张拉40%控制应力,剪跨比为1.0和1.5时UHPC梁均发生剪切破坏,但是剪跨比增大至2.0时,UHPC梁发生弯曲破坏,受压区混凝土压溃。规范中的抗剪公式均低估了体外预应力无腹筋UHPC梁的抗剪承载力,其斜截面抗剪强度的实验值与计算值之比的平均值分别为2.28和3.21。

     

  • 图  1  试验梁构造尺寸

    Figure  1.  Dimensions of test beams

    a—Shear span length

    图  2  预应力张拉及监测

    Figure  2.  Prestressing and monitoring

    图  3  加载装置及测点布置

    Figure  3.  Loading devices and measuring points

    V1-V5—Vertical displacement transducers; H1—Horizontal displacement transducer; L1, L2—Force sensors; GS1—Strain gauge on steel wire; GG1, GG2—Strain gauges on concrete surface

    图  4  无腹筋UHPC梁破坏形态

    Figure  4.  Failure of UHPC beams without stirrups

    图  5  剪跨比λ对无腹筋UHPC试验梁的破坏影响的细节照片

    Figure  5.  Photos of effect of shear span-to-depth ratio λ on failure of UHPC beams without stirrups

    图  6  无腹筋UHPC梁荷载-挠度曲线

    Figure  6.  Load-deflection curves of UHPC beams without stirrups

    图  7  加载过程的钢绞线应变

    Figure  7.  Strain of steel strand under loading

    表  1  无腹筋超高性能混凝土(UHPC)梁设计参数及命名

    Table  1.   Design parameters and nomenclature of ultra-high performance concrete (UHPC) beams without stirrups

    NumberSpecimen
    Prestress
    level/%
    Longitudinal
    reinforcements ratio/%
    Volume fraction of
    steel fibers/%
    Shear span-to-depth
    ratio
    Beam1 P0-L2-2vol%-R1 0 2.0 2.0 1.0
    Beam2 P1-L2-2vol%-R1 25 2.0 2.0 1.0
    Beam3 P2-L2-2vol%-R1 40 2.0 2.0 1.0
    Beam4 P2-L2-2vol%-R1.5 40 2.0 2.0 1.5
    Beam5 P2-L2-2vol%-R2 40 2.0 2.0 2.0
    Beam6 P2-L1-2vol%-R1 40 1.0 2.0 1.0
    Beam7 P2-L3-2vol%-R1 40 3.0 2.0 1.0
    Beam8 P2-L2-1vol%-R1 40 2.0 1.0 1.0
    Beam9 P2-L2-1.5vol%-R1 40 2.0 1.5 1.0
    下载: 导出CSV

    表  2  UHPC力学性能

    Table  2.   Mechanical properties of UHPC

    Volume fraction of
    steel fiber/vol%
    1.01.52.0
    ${f_{{\rm{cu}}}}$/MPa 163 179 171
    ${f_{{\rm{ts}}}}$/MPa 12 14 16
    ${f_{{\rm{ct, fl}}}}$/MPa 27 30 31
    ${\sigma _{{\rm{f}}1}}$/MPa 4.31 5.62 8.94
    ${\sigma _{{\rm{f2}}}}$/MPa 2.65 3.46 5.50
    ${E_{\rm{c}}}$/MPa 39243 39928 40983
    Notes: ${f_{{\rm{cu}}}}$—Cubic compressive strength; ${f_{{\rm{ts}}}}$—Splitting tensile strength; ${f_{{\rm{ct, fl}}}}$—Flexural strength; ${\sigma _{{\rm{f}}1}}$—Tested post-cracking strength; ${\sigma _{{\rm{f2}}}}$—Post-cracking strength for design; ${E_{\rm{c}}}$—Elastic modulus.
    下载: 导出CSV

    表  3  预应力张拉封锚后无腹筋UHPC梁应变值

    Table  3.   Strain value of UHPC beams without stirrups after prestress anchorage

    NumberSteel strandLongitudinal reinforcementBottom of UHPC beamTop of UHPC beam
    Strain/10−6Stress/MPaStrain/10−6Stress/MPaStrain/10−6Stress/MPaStrain/10−6Stress/MPa
    Beam1 0 0 0 0 0 0 0 0
    Beam2 1546 301 −90 −18 −295 −12 45 2
    Beam3 2577 503 −83 −17 −465 −19 129 5
    Beam4 2724 531 −110 −22 −520 −21 123 5
    Beam5 2476 483 −35 −7 −712 −29 99 4
    Beam6 2832 552 −110 −22 −556 −23 130 5
    Beam7 2476 483 −55 −11 −429 −18 85 3
    Beam8 2557 499 −130 −26 −232 −9 111 4
    Beam9 2582 503 −29 −6 −416 −17 126 5
    下载: 导出CSV

    表  4  无腹筋UHPC梁的应力与应变值

    Table  4.   Stress and strain of UHPC beams without stirrups

    NumberSteel strandLongitudinal reinforcementBottom of UHPC beamTop of UHPC beam
    Strain/10−6Stress/MPaStrain/10−6Stress/MPaStrain/10−6Stress/MPaStrain/10−6Stress/MPa
    Beam1 0 0 2397 479 3566 146 −1714 −70
    Beam2 4832 942 1 915 383 2257 92 −2220 −91
    Beam3 6077 1185 504 101 553 23 −2733 −112
    Beam4 5820 1135 76 15 1110 45 −2347 −96
    Beam5 8236 1606 145 29 755 31 −3452 −141
    Beam6 6046 1179 239 48 290 12 −1735 −71
    Beam7 4078 795 271 54 1243 51 −1670 −68
    Beam8 5535 1079 550 110 1183 48 −2114 −86
    Beam9 5717 1115 285 57 604 25 −1 845 −75
    下载: 导出CSV

    表  5  实验结果汇总

    Table  5.   Summary of test results

    NumberSpecimen nameCracking load/kNNorthern load/kNSouthern load/kNFailure modeTested peak load/kN
    Beam1 P0-L2-2vol%-R1 50 170 180 Flexural failure 175
    Beam2 P1-L2-2vol%-R1 110 424 450 Southern shear failure 450
    Beam3 P2-L2-2vol%-R1 180 486 513 Northern shear failure 486
    Beam4 P2-L2-2vol%-R1.5 150 330 346 Southern shear failure 346
    Beam5 P2-L2-2vol%-R2 90 283 305 Flexural failure 294
    Beam6 P2-L1-2vol%-R1 160 435 451 Southern shear failure 451
    Beam7 P2-L3-2vol%-R1 160 485 494 Northern shear failure 485
    Beam8 P2-L2-1vol%-R1 150 427 457 Northern shear failure 427
    Beam9 P2-L2-1.5vol%-R1 120 456 459 Southern shear failure 459
    下载: 导出CSV

    表  6  无腹筋UHPC梁斜截面抗剪强度的实验值与计算值

    Table  6.   Experimental and calculated values of shear strength on the inclined section of UHPC beams without stirrups

    NumberVu,test /kNFrench code NF P 18-710[24]Chinese code GB 50010—2010[29]
    Vc/kNVf/kNVu1/kNVu,test/Vu1Vc/kNVp/kNVu2/kNVu,test/Vu2
    Beam1 175 37.1 182.9 219.9 0.80 140.0 0.0 140.0 1.25
    Beam2 450 41.1 182.9 224.0 2.01 140.0 4.2 144.2 3.12
    Beam3 486 43.5 182.9 226.4 2.15 140.0 7.0 147.0 3.31
    Beam4 346 43.5 182.9 226.4 1.53 140.0 7.4 147.4 2.35
    Beam5 294 43.5 182.9 226.4 1.30 116.7 6.8 123.4 2.38
    Beam6 451 43.5 182.9 226.4 1.99 140.0 7.7 147.7 3.05
    Beam7 485 43.5 182.9 226.4 2.14 140.0 6.8 146.8 3.30
    Beam8 427 42.8 88.2 130.9 3.26 105.0 7.0 112.0 3.81
    Beam9 459 44.3 115.0 159.2 2.88 122.5 7.0 129.5 3.54
    For all beams Mean of Vu,test/Vu1=2.01; STDEV=0.76 Mean of Vu,test/Vu2=2.90; STDEV=0.79
    For shear-failure beams Mean of Vu,test/Vu1=2.28; STDEV=0.59 Mean of Vu,test/Vu2=3.21; STDEV=0.46
    Notes: Vu,test—Tested shear strength; Vu1—Calculated shear strength of French code; Vu2—Calculated shear strength of Chinese code; Vc—Calculation of UHPC contribution; Vf—Calculation of fiber contribution; Vp—Calculation of prestress contribution.
    下载: 导出CSV
  • [1] 管品武, 涂雅筝, 张普, 等. 超高性能混凝土单轴拉压本构关系研究[J]. 复合材料学报, 2019, 36(5):1295-1305.

    GUAN Pinwu, TU Yazheng, ZHANG Pu, et al. A review on constitutive relationship of ultra-high performance concrete under uniaxial compression and tension[J]. Acta Materiae Compositae Sinica,2019,36(5):1295-1305(in Chinese).
    [2] 张文华, 张仔祥, 刘鹏宇, 等. 多尺度纤维增强超高性能混凝土的轴心抗拉和抗压行为[J]. 硅酸盐学报, 2020, 48(8):1155-1167.

    ZHANG Wenhua, ZHANG Zixiang, LIU Pengyu, et al. Uniaxial tensile and compressive stress-strain behavior of multi-scale fiber-reinforced ultra-high performance concrete[J]. Journal of the Chinese Ceramic Society,2020,48(8):1155-1167(in Chinese).
    [3] 邵旭东, 管亚萍, 晏班夫. 预制超高性能混凝土π形梁桥的设计与初步试验[J]. 中国公路学报, 2018, 31(1):46-56. doi: 10.3969/j.issn.1001-7372.2018.01.006

    SHAO Xudong, GUAN Yaping, YAN Banfu. Design and preliminary experiments of UHPC π-shaped girder bridge[J]. China Journal of Highway and Transport,2018,31(1):46-56(in Chinese). doi: 10.3969/j.issn.1001-7372.2018.01.006
    [4] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8):50-58. doi: 10.3969/j.issn.1001-7372.2015.08.007

    ZHANG Zhe, SHAO Xudong, LI Wenguang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport,2015,28(8):50-58(in Chinese). doi: 10.3969/j.issn.1001-7372.2015.08.007
    [5] 杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11): 3925-3938.

    GAO Xiaolong, WANG Junyan, GUO Junyuan, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading [J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3925-3938(in Chinese).
    [6] 张晓亮, 屈文俊. 无腹筋GFRP筋混凝土梁抗剪性能试验[J]. 中国公路学报, 2010, 23(5):51-57. doi: 10.3969/j.issn.1001-7372.2010.05.008

    ZHANG Xiaoliang, QU Wenjun. Shear behavior test of GFRP-reinforced concrete beams without stirrups[J]. China Journal of Highway and Transport,2010,23(5):51-57(in Chinese). doi: 10.3969/j.issn.1001-7372.2010.05.008
    [7] ARSLAN Guray. Cracking shear strength of RC slender beams without stirrups[J]. Journal of Civil Engineering and Management,2008,14(3):177-182. doi: 10.3846/1392-3730.2008.14.14
    [8] LANTSOGHT E O. Database of shear experiments on steel fiber reinforced concrete beams without stirrups[J]. Materials,2019,12(6):917. doi: 10.3390/ma12060917
    [9] 方志, 向宇, 刘传乐. 配置碳纤维预应力筋的钢纤维活性粉末混凝土无腹筋梁疲劳性能试验研究[J]. 建筑结构学报, 2013, 34(1):101-107.

    FANG Zhi, XIANG Yu, LIU Chuanle. Experimental study on fatigue properties of CFRP prestressed RPC beams without stirrups[J]. Journal of Building Structures,2013,34(1):101-107(in Chinese).
    [10] 郑辉, 方志, 刘明. 预应力活性粉末混凝土箱梁抗剪性能试验研究[J]. 土木工程学报, 2015, 48(6):51-63.

    ZHENG Hui, FANG Zhi, LIU Ming. Experimental study on shear behavior of prestressed reactive powder concrete box girders[J]. China Civil Engineering Journal,2015,48(6):51-63(in Chinese).
    [11] 徐海宾, 邓宗才, 陈春生, 等. 超高性能纤维混凝土梁抗剪性能试验研究[J]. 土木工程学报, 2014, 47(12):91-97.

    XU Haibin, DENG Zongcai, CHEN Chunsheng, et al. Experimental study on shear strength of ultra-high performance fiber reinforced concrete beams[J]. China Civil Engineering Journal,2014,47(12):91-97(in Chinese).
    [12] VOO Y L, FOSTER S J, GILBERT R I. Shear strength of fiber reinforced reactive powder concrete prestressed girders without stirrups[J]. Journal of Advanced Concrete Technology,2006,4(1):123-132. doi: 10.3151/jact.4.123
    [13] VOO Y L, POON W K, FOSTER S J. Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups[J]. Journal of Structural Engineering,2010,136(11):1393-1400. doi: 10.1061/(ASCE)ST.1943-541X.0000234
    [14] WU Xiangguo, HAN Sangmook. First diagonal cracking and ultimate shear of I-shaped reinforced girders of ultra high performance fiber reinforced concrete without stirrup[J]. International Journal of Concrete Structures and Materials,2009,3 (1):47-56. doi: 10.4334/IJCSM.2009.3.1.047
    [15] 梁兴文, 胡翱翔, 于婧, 等. 钢纤维对超高性能混凝土抗弯力学性能的影响[J]. 复合材料学报, 2018, 35(3):722-731.

    LIANG Xingwen, HU Aoxiang, YU Jing, et al. Effect of steel fibers on the flexural response of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(3):722-731(in Chinese).
    [16] 杨简, 陈宝春, 吴香国, 等. 新拌超高性能纤维增强混凝土流动性能对其抗压强度的影响[J]. 复合材料学报, 2021, 38(11): 3827-3837.

    YANG Jian, CHEN Baochun, WU Xiangguo, et al. Influence of the fresh ultra-high performance fiber reinforced concrete flowability on its compressive strength [J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3827-3837(in Chinese).
    [17] 姜海波, 李宇鸿, 肖杰, 等. 预制节段干接缝体外预应力混凝土简支梁抗剪性能试验[J]. 中国公路学报, 2018, 31(12):188-195. doi: 10.3969/j.issn.1001-7372.2018.12.018

    JIANG Haibo, LI Yuhong, XIAO Jie, et al. Shear behavior of precast concrete segmental simply supported beam with external tendons and dry joints[J]. China Journal of Highway and Transport,2018,31(12):188-195(in Chinese). doi: 10.3969/j.issn.1001-7372.2018.12.018
    [18] 徐海宾, 邓宗才. 预应力超高性能钢纤维混凝土梁受弯性能试验研究[J]. 建筑结构学报, 2014, 35 (12):58-64.

    XU Haibin, DENG Zongcai. Experimental research on flexural behavior of prestressed ultra-high performance steel fiber concrete beams[J]. Journal of Building Structures,2014,35 (12):58-64(in Chinese).
    [19] WANG Jingquan, QI Jianan, ZHANG Jian. Optimization method and experimental study on the shear strength of externally prestressed concrete beams[J]. Advances in Structural Engineering. 2014, 17(4): 607-615.
    [20] QI Jianan, WANG Jingquan, MA Zhongguo, et al. Shear behavior of externally prestressed concrete beams with draped tendons[J]. ACI Structural Journal,2016,113(4):677-688.
    [21] 方志, 刘明, 郑辉. 预应力活性粉末混凝土箱梁抗弯性能试验[J]. 建筑科学与工程学报, 2015, 32(6):8-16. doi: 10.3969/j.issn.1673-2049.2015.06.002

    FANG Zhi, LIU Ming, ZHENG Hui. Experiment on flexural behaviors of prestressed reactive powder concrete box girder[J]. Journal of Architecture and Civil Engineering,2015,32(6):8-16(in Chinese). doi: 10.3969/j.issn.1673-2049.2015.06.002
    [22] 谭皓月, 张川, 朱爱萍, 等. 低受拉纵筋率时高强轻骨料混凝土无腹筋梁受力性能试验研究[J]. 建筑结构, 2019, 49(10):64-69.

    TAN Haoyue, ZHANG Chuan, ZHU Aiping, et al. Experiments on behavior of high-strength lightweight concrete beams without web reinforcement with low longitudinal reinforcement ratio[J]. Building Structure,2019,49(10):64-69(in Chinese).
    [23] 戚家南, 王景全, 周凯, 等. UHPC梁受剪性能试验与抗剪承载力计算方法[J]. 中国公路学报, 2020, 33 (7):95-103. doi: 10.3969/j.issn.1001-7372.2020.07.010

    QI Jianan, WANG Jingquan, ZHOU Kai, et al. Experimental and theoretical investigations on shear strength of UHPC beams[J]. China Journal of Highway and Transport,2020,33 (7):95-103(in Chinese). doi: 10.3969/j.issn.1001-7372.2020.07.010
    [24] AFNOR. National addition to eurocode 2-Design of concrete structures: specific rules for ultra-high performance fibre-reinforced concrete (UHPFRC): NF P 18-710[S]. Paris: FANOR, 2016.
    [25] 王景全, 戚家南. 有腹筋与无腹筋钢筋混凝土梁抗剪承载力统一计算方法[J]. 土木工程学报, 2013, 46(7):47-57.

    WANG Jingquan, QI Jia’nan. Unified shear strength computation model for reinforced concrete beams with and without stirrups[J]. China Civil Engineering Journal,2013,46(7):47-57(in Chinese).
    [26] 贺志启, 刘钊, 张宇峰. 基于桁-拱叠加模型的体外预应力混凝土梁抗剪承载力计算方法[J]. 土木工程学报, 2010, 43(1):56-63.

    HE Zhiqi, LIU Zhao, ZHANG Yufeng. A method based on truss-arch model for calculating the shear strength of externally prestressed concrete beams[J]. China Civil Engineering Journal,2010,43(1):56-63(in Chinese).
    [27] 李国平, 沈殷. 体外预应力混凝土简支梁抗剪承载力计算方法[J]. 土木工程学报, 2007(2):64-69. doi: 10.3321/j.issn:1000-131X.2007.02.011

    LI Guoping, SHEN Yin. Calculation method for the shear bearing capacity of simply-supported externally prestressed concrete beams[J]. China Civil Engineering Journal,2007(2):64-69(in Chinese). doi: 10.3321/j.issn:1000-131X.2007.02.011
    [28] FANOR. Concrete-ultra-high performance fibre-reinforced concrete-Specifications, performance, production and conformity: NF P 18-470[S]. Paris: FANOR, 2016.
    [29] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国标准出版社, 2010.

    Ministry of Housing and Urban-Rural Development of People’s Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  1656
  • HTML全文浏览量:  424
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 修回日期:  2021-03-04
  • 录用日期:  2021-03-10
  • 网络出版日期:  2021-03-16
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回