留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

膨胀石墨/MnO2超级电容器电极材料中膨胀石墨的作用机制

桂阳 曾靖宇 范宝安 张春桃

桂阳, 曾靖宇, 范宝安, 等. 膨胀石墨/MnO2超级电容器电极材料中膨胀石墨的作用机制[J]. 复合材料学报, 2022, 39(1): 242-249. doi: 10.13801/j.cnki.fhclxb.20210313.001
引用本文: 桂阳, 曾靖宇, 范宝安, 等. 膨胀石墨/MnO2超级电容器电极材料中膨胀石墨的作用机制[J]. 复合材料学报, 2022, 39(1): 242-249. doi: 10.13801/j.cnki.fhclxb.20210313.001
GUI Yang, ZENG Jingyu, FAN Baoan, et al. Action mechanism of expanded graphite in the composite of expanded graphite/MnO2 supercapacitor electrode materials[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 242-249. doi: 10.13801/j.cnki.fhclxb.20210313.001
Citation: GUI Yang, ZENG Jingyu, FAN Baoan, et al. Action mechanism of expanded graphite in the composite of expanded graphite/MnO2 supercapacitor electrode materials[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 242-249. doi: 10.13801/j.cnki.fhclxb.20210313.001

膨胀石墨/MnO2超级电容器电极材料中膨胀石墨的作用机制

doi: 10.13801/j.cnki.fhclxb.20210313.001
基金项目: 国家自然科学基金 (21206129;21776225)
详细信息
    通讯作者:

    范宝安,博士,教授,硕士生导师,研究方向为燃料电池、超级电容器 E-mail:fanbaoan@wust.edu.cn

  • 中图分类号: TM53; TB332

Action mechanism of expanded graphite in the composite of expanded graphite/MnO2 supercapacitor electrode materials

  • 摘要: 采用一种简便的方法制备出了单相α-MnO2和膨胀石墨(EG)/MnO2复合物。实验结果表明EG/MnO2复合物有着比单相α-MnO2更高的比电容和更加优异的倍率性能。随后采用XRD、TG、EIS、BET等手段对复合材料中EG的作用机制进行了研究,结果发现在EG/MnO2复合物中出现了δ相MnO2 (δ-MnO2为层状结构,相较于α-MnO2更加有利于离子的扩散和传输),δ-MnO2大约占复合物总质量的30wt%,EG占3.4wt%。EG/MnO2复合物的电荷转移电阻显著低于单相α-MnO2。EG/MnO2的比表面积为38.7 m2·g−1,而单相α-MnO2的比表面积只有21.6 m2·g−1,更大的比表面积使材料与电解液接触更为充分,从而降低了电荷转移电阻。综上,复合材料中EG的作用机制是通过自身的层状结构诱导了MnO2在其上沉积形成了层状的δ-MnO2,同时抑制了MnO2颗粒的生长,增加了颗粒与电解液的接触面积,降低了电荷转移电阻,从而增大了比电容,也提高了其倍率性能。

     

  • 图  1  单一MnO2 (a)和膨胀石墨(EG)/MnO2 (b)复合材料的恒流充放电曲线

    Figure  1.  Constant current charge-discharge curve of single MnO2 (a) and expanded graphite (EG)/MnO2 composite (b)

    图  2  MnO2和EG/MnO2的XRD图谱

    Figure  2.  XRD pattern of MnO2 and EG/MnO2

    图  3  MnO2和EG/MnO2的交流阻抗谱

    Figure  3.  Electrochemical impedance spectroscopy of MnO2 and EG/MnO2

    Rct—Charge transfer resistance; RS—Ohmic resistance; Zw—Warbury impedance; CPE—Constant phase angle impedance

    图  4  MnO2和EG/MnO2的等温吸附曲线(77.35 K)

    Figure  4.  Adsorption isotherm of MnO2和EG/MnO2 (77.35 K)

    图  5  MnO2和EG/MnO2的TG曲线

    Figure  5.  TG curve of MnO2和EG/MnO2

    图  6  MnO2和EG/MnO2的FESEM照片

    Figure  6.  FESEM images of MnO2 and EG/MnO2 ((a) Single MnO2; (b) EG/MnO2 composite)

    图  7  MnO2和EG/MnO2的循环稳定性(a)和充放电效率(b)

    Figure  7.  Cycle stability (a) and coulombic efficiency (b) of MnO2 and EG/MnO2

    表  1  MnO2和EG/MnO2在不同电流密度下的比电容Cm (F·g−1)

    Table  1.   Specific capacitance Cm of single MnO2 and EG/MnO2 composite under different current density (F·g−1)

    Current density/(A·g−1)0.10.20.51.02.0
    MnO2 327 271 258 150 106
    EG/MnO2 476 435 428 422 410
    下载: 导出CSV

    表  2  通过EIS拟合得到的MnO2和EG/MnO2RSRct

    Table  2.   RS and Rct of MnO2 and EG/MnO2 fitted by EIS data

    Rs/(Ω·cm2)Rct/(Ω·cm2)
    MnO2 1.050 3.535
    EG/MnO2 1.247 2.519
    下载: 导出CSV

    表  3  本研究中EG/MnO2复合材料的储能性能与文献中类似研究结果的对比

    Table  3.   Comparison of energy-storing capability of EG/MnO2 in this work with other work

    CompoundsCm/
    (F·g−1)
    Measure
    rate
    Electrolyte/
    (Na2SO4 mol·L−1)
    Rate
    capability
    Cycle
    stability
    Literature
    UN-MnO2 810 1.0 A·g−1 1 58.5% (1.0-20 A·g−1) 88.45% (5000cyc@5.0 A·g−1) [2]
    δ-MnO2/Ni foam 325 1.0 A·g−1 1 67.6% (1-5 A·g−1) 86% (1000cyc@30 mV·s−1) [11]
    MnO2/CNFs 324.5 0.5 A·g−1 1 55.4% (0.5-2 A·g−1) 97.0 (1000cyc@3.5 A·g−1) [15]
    δ-MnO2/Corn-C 520 5 mV·s−1 1 53.5% (5-100 mV·s−1) 80.9% (5000cyc@5 A·g−1) [16]
    Ni/δ-MnO2 883 10 mV·s−1 1 46.2% (0.01-0.2 V·s−1) 73.8% (2000cyc@1 mA·cm−2) [17]
    δ-MnO2 HMS 394 1.0 A·g−1 1 71.3% (1-10 A·g−1) 95.2% (5000cyc@5 A·g−1) [20]
    C@δ-MnO2 345 0.5 A·g−1 1 55.9% (0.5-5 A·g−1) 92.8% (5000cyc@ 5 A·g−1) [22]
    α-MnO2/CNTs 276 3.0 A·g−1 0.5 65.4% (3–9.5 A·g−1) 91.6% (5000cyc@3.0 A·g−1) [23]
    EG/MnO2 220 2 mV·s−1 1 95% (0.1-0.5 A·g−1) 100% (400cyc@5 mV·s−1) [24]
    EG/MnO2 161 0.1 A·g−1 1 68.3% (0.1-5 A·g−1) 100% (1000cyc@1 A·g−1) [25]
    EG/MnO2 428 0.5 A·g−1 1 86% (0.1-2 A·g−1) 100% (100cyc@0.5 A·g−1) This work
    Notes: UN-MnO2—Ultrasonic and NH4+ assisted MnO2 deposited on Ni foam substrate; CNFs—Carbon nanofibers; HMS—Hollow microsphere; CNTs—Carbon nanotubes; Cm—Specific capacitance.
    下载: 导出CSV
  • [1] XIA A, YU W R, YI J, et al. Synthesis of porous δ-MnO2 nanosheets and their supercapacitor performance[J]. Journal of Electroanalytical Chemistry,2019,839:25-31. doi: 10.1016/j.jelechem.2019.02.059
    [2] ZHANG M, YANG D Y, LI J T. Ultrasonic and NH4+ assisted Ni foam substrate oxidation to achieve high performance MnO2 supercapacitor[J]. Applied Surface Science,2021,541:148546. doi: 10.1016/j.apsusc.2020.148546
    [3] SU X H, YU L, CHENG G, et al. Controllable hydrothermal synthesis of Cu-doped δ-MnO2 films with different morphologies for energy storage and conversion using supercapacitors[J]. Applied Energy,2014,134:439-445. doi: 10.1016/j.apenergy.2014.08.050
    [4] ZHAO S Q, LIU T M, MUHAMMAD S J, et al. Rational synthesis of Cu-doped porous δ-MnO2 microsphere for high performance supercapacitor applications[J]. Electrochimica Acta,2016,191:716-723. doi: 10.1016/j.electacta.2016.01.106
    [5] GAO Q, WANG J X, KE B, et al. Fe doped δ-MnO2 nanoneedles as advanced supercapacitor electrodes[J]. Ceramics International,2018,44(15):18770-18775. doi: 10.1016/j.ceramint.2018.07.108
    [6] LI J J, HU B, NIE P F, et al. Fe-regulated δ-MnO2 nanosheet assembly on carbon nanofiber under acidic condition for high performance supercapacitor and capacitive deionization[J]. Applied Surface Science,2021,542:148715. doi: 10.1016/j.apsusc.2020.148715
    [7] ZHAO G Y, ZHANG D, ZHANG L, et al. Ti@δ-MnO2 core-shell nanowire arrays as self-supported electrodes of supercapacitors and Li ion batteries[J]. Electrochimica Acta,2016,202:8-13. doi: 10.1016/j.electacta.2016.03.203
    [8] RADHAMANI A V, SURENDRA M, RAO M S. Zn doped δ-MnO2 nano flakes: An efficient electrode material for aqueous and solid state asymmetric supercapacitors[J]. Applied Surface Science,2018,450:209-218. doi: 10.1016/j.apsusc.2018.04.081
    [9] DENG X C, BAI X J, CAI Z H, et al. Renewable carbon foam/δ-MnO2 composites with well-defined hierarchical microstructure as supercapacitor electrodes[J]. Journal of Materials Research and Technology,2020,9(4):8544-8555. doi: 10.1016/j.jmrt.2020.05.130
    [10] WANG X S, CHEN L, ZHANG S Q, et al. Compounding δ-MnO2 with modified graphene nanosheets for highly stable asymmetric supercapacitors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,573:57-66.
    [11] PANG M J, LONG G H, JIANG S, et al. One pot low-temperature growth of hierarchical δ-MnO2 nanosheets on nickel foam for supercapacitor applications[J]. Electrochimica Acta,2015,161:297-304. doi: 10.1016/j.electacta.2015.02.089
    [12] SHEN H J, KONG X D, ZHANG Pu, et al. In-situ hydrothermal synthesis of δ-MnO2/soybean pod carbon and its high performance application on supercapacitor[J]. Journal of Alloys and Compounds,2021,853:157357. doi: 10.1016/j.jallcom.2020.157357
    [13] FAN Z J, XIE M M, JIN X, et al. Characteristics and electrochemical performances of supercapacitors using double-walled carbon nanotube/δ-MnO2 hybrid material electrodes[J]. Journal of Electroanalytical Chemistry,2011,659(2):191-195. doi: 10.1016/j.jelechem.2011.05.025
    [14] LIU J Q, ZHAO W, WEN G L, et al. Hydrothermal synthesis of well-standing δ-MnO2 nanoplatelets on nitrogen-doped reduced graphene oxide for high-performance supercapacitor[J]. Journal of Alloys and Compounds,2019,787:309-317. doi: 10.1016/j.jallcom.2019.02.090
    [15] LIU C S, HUANG C L, FANG H C, et al. MnO2-based carbon nanofiber cable for supercapacitor applications[J]. Journal of Energy Storage,2021,33:102130. doi: 10.1016/j.est.2020.102130
    [16] Synthesis of δ-MnO2/C assisted with carbon sheets by directly carbonizing from corn stalk for high-performance supercapacitor[J]. Materials Letters, 2021, 285: 129116.
    [17] XIE W L, SUN M Y, LI Y Q, et al. Three-dimensional Ni/MnO2 nanocylinder array with high capacitance for supercapacitors[J]. Results in Physics,2019,12:1411-1416. doi: 10.1016/j.rinp.2019.01.041
    [18] XIE A J, JIANG C, SUN W L, et al. A coralliform-structured γ-MnO2/polyaniline nanocomposite for high-performance supercapacitors[J]. Journal of Electroanalytical Chemistry,2017,789:29-37. doi: 10.1016/j.jelechem.2017.02.032
    [19] BAI X L, TONG X L, GAO Y L, et al. Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors[J]. Electrochimica Acta,2018,281:525-533. doi: 10.1016/j.electacta.2018.06.003
    [20] CHAI C J, LIU A F, WANG Y, et al. A MoS2-templated oxidation-etching strategy to synthesize hollow δ-MnO2 nanospheres as a high-performance electrode for supercapacitor[J]. Ceramics International,2018,44(14):16923-16930. doi: 10.1016/j.ceramint.2018.06.132
    [21] LONG X, TIAN L, WANG J, et al. Interconnected δ-MnO2 nanosheets anchored on activated carbon cloth as flexible electrode for high-performance aqueous asymmetric supercapacitors[J]. Journal of Electroanalytical Chemistry,2020,877:114656. doi: 10.1016/j.jelechem.2020.114656
    [22] WANG X, CHEN S, LI D, et al. Direct interfacial growth of MnO2 nanostructure on hierarchically porous carbon for high-performance asymmetric supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2018,6:633-641.
    [23] RAMESH S, KIM H S, HALDORAI Y, et al. Fabrication of nanostructured MnO2/carbon nanotube composite from 3D precursor complex for high performance supercapacitor[J]. Materials Letters,2017,196:132-136. doi: 10.1016/j.matlet.2017.03.044
    [24] 万传云, AZUMI K, KONNO H. 不同工作介质下二氧化锰/膨胀石墨复合材料的电化学电容器行为[J]. 化学学报, 2007, 65(17):1911-1916.

    WAN C Y, AZUMI K, KONNO H. Behavior of manganese dioxide/exfoliated graphite Composite as materials for electrochemical capacitor in different Electrolytes[J]. Acta chimica sinica,2007,65(17):1911-1916(in Chinese).
    [25] 徐德芳, 宋燕, 田晓冬, 等. 纳米MnO2/膨胀石墨复合材料的制备及其电化学性能[J]. 新型炭材料, 2016, 31(6):615-620.

    XU D F, SONG Y, TIAN X D, et al. Preparation and electrochemical properties of nanostructured MnO2/ exfoliated graphite composites[J]. New carbon materials,2016,31(6):615-620(in Chinese).
    [26] 向震, 范宝安, 史东辉, 等. 表面改性对膨胀石墨电容性能的影响[J]. 电源技术, 2019, 43(4):81-84.

    XIANG Z, FAN B A, SHI D H, et al. Research on capacitance prope of surface-modified expanded graphite[J]. Chinese Journal of Power Sources,2019,43(4):81-84(in Chinese).
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  734
  • HTML全文浏览量:  472
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 修回日期:  2021-02-12
  • 录用日期:  2021-03-10
  • 网络出版日期:  2021-03-15
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回