留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti-Ni基记忆合金复合材料的研究进展

冯欣欣 衣晓洋 王海振 孟祥龙

冯欣欣, 衣晓洋, 王海振, 等. Ti-Ni基记忆合金复合材料的研究进展[J]. 复合材料学报, 2021, 38(7): 2070-2077. doi: 10.13801/j.cnki.fhclxb.20210312.007
引用本文: 冯欣欣, 衣晓洋, 王海振, 等. Ti-Ni基记忆合金复合材料的研究进展[J]. 复合材料学报, 2021, 38(7): 2070-2077. doi: 10.13801/j.cnki.fhclxb.20210312.007
FENG Xinxin, YI Xiaoyang, WANG Haizhen, et al. Progress of Ti-Ni based shape memory alloy composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2070-2077. doi: 10.13801/j.cnki.fhclxb.20210312.007
Citation: FENG Xinxin, YI Xiaoyang, WANG Haizhen, et al. Progress of Ti-Ni based shape memory alloy composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2070-2077. doi: 10.13801/j.cnki.fhclxb.20210312.007

Ti-Ni基记忆合金复合材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20210312.007
基金项目: 国家自然科学基金(51931004;51871080)
详细信息
    通讯作者:

    孟祥龙,博士,教授,博士生导师,研究方向为形状记忆合金及马氏体相变 E-mail:xlmeng@hit.edu.cn

  • 中图分类号: TG139

Progress of Ti-Ni based shape memory alloy composites

  • 摘要: Ti-Ni形状记忆合金因具有优异的形状记忆效应和超弹性及良好的耐腐蚀性、生物兼容性等诸多优点,被广泛应用于航空航天、机械、电子、生物医用等领域。Ti-Ni基复合材料中Ti-Ni基体和增强相之间的交互作用可使其集优异力学性能、功能特性于一体。本文主要阐述了近几年采用不同方法制备的Ti-Ni形状记忆合金复合材料的最新研究进展,包括微观组织结构的演化规律、马氏体相变行为及力学性能和应变恢复特性。另外,对当前Ti-Ni形状记忆合金复合材料的制备技术存在的问题及未来的发展方向进行了分析和展望。

     

  • 图  1  Fe(Cu)/Ti-Ni复合材料制备方法示意图((a), (b))及复合材料横截面和纵剖面的背散射电子形貌图像((c), (d))[2-3]

    Figure  1.  Schematic of preparation method for Fe(Cu)/Ti-Ni composite ((a), (b)); Backscattered scanning electron morphology images of cross-section and longitudinal-section of composite ((c), (d))[2-3]

    图  2  Ti-Ni记忆合金和Fe/Ti-Ni记忆合金复合材料的应力-应变曲线(a)及耗散能(b)[2]

    Figure  2.  Stress-strain curves (a) and dissipated energy (b) of Ti-Ni shape memory alloy and Fe/Ti-Ni shape memory alloy composite[2]

    SMA–Shape memory alloy

    图  3  Nb/Ti-Ni记忆合金复合材料的SEM图像(a)和TEM图像(b)[4]

    Figure  3.  SEM image (a) and TEM images (b) of Nb/Ti-Ni shape memory alloy composite[4]

    图  4  纳米级NbTi/Ti-Ni复合材料拉伸应力-应变曲线(a)和超弹性吸收能(b)[5]

    Figure  4.  Tensile stress-strain curves obtained in nanocomposite (a) and superelastic absorbed energy of NbTi/NiTi nanocomposte (b)[5]

    图  5  不同TiC含量的TiC/Ti-Ni记忆合金复合材料的应力-应变曲线[16]

    Figure  5.  Stress-strain curves of TiC/Ti-Ni shape memory alloy composites with different TiC contents[16]

    图  6  不同SiC含量的SiC/Ti-Ni复合材料的背散射形貌图像((a) 3%; (b) 5%[23])

    Figure  6.  Backscattered electron images of SiC/Ti-Ni composites with different SiC contents ((a) 3%; (b) 5%[23])

    图  7  Ti-Ni-Hf基复合材料制备流程((a)~(d))及相应的微观结构(e)和应变恢复特性(f)[27-28]

    Figure  7.  Preparation process ((a)–(d)), corresponding microstructure (e) and strain recovery characteristics (f) of Ti-Ni-Hf matrix composite[27-28]

  • [1] 黄陆军, 耿林. 网状结构钛基复合材料[M]. 北京: 国防工业出版社, 2015.

    HUANG L J, GENG L. Titanium matrix composites with network structure[M]. Beijing: National Defence Industry Press, 2015(in Chinese).
    [2] HAO S J, CUI L S, SHAO Y, et al. In situ X-ray diffraction study of deformation behavior in a Fe/NiTi composite[J]. Applied Physics Letters,2012,101(22):221904. doi: 10.1063/1.4767993
    [3] HAO S J, CUI L S, CHEN Z, et al. A novel stretchable coaxial NiTi-sheath/Cu-core composite with high strength and high conductivity[J]. Advanced Materials,2013,25(8):1199-1202. doi: 10.1002/adma.201203762
    [4] HAO S J, CUI L S, JIANG D Q, et al. Nanostructured Nb reinforced NiTi shape memory alloy composite with high strength and narrow hysteresis[J]. Applied Physics Letters,2013,102(23): 231905.
    [5] HAO S J, CUI L S, WANG Y D, et al. The ultrahigh mechanical energy-absorption capability evidenced in a high-strength NbTi/NiTi nanocomposite[J]. Applied Physics Letters,2011,99(2):024102. doi: 10.1063/1.3610562
    [6] HAO S J, CUI L S, JIANG D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength[J]. Science,2013,339(6124):1191-1194. doi: 10.1126/science.1228602
    [7] HAO S J, CUI L S, JIANG D Q, et al. Superelastic memory effect in in-situ NbTi-nanowire-NiTi nanocomposite[J]. Applied Physics Letters,2012,101(17):173115. doi: 10.1063/1.4764538
    [8] HU M, YANG H, SHI X, et al. Transformation and superelastic characteristics of large hysteresis TiNi matrix shape memory alloys reinforced by V nanowires[J]. Materials Letters,2018,228:391-394.
    [9] ZHANG J, HAO S J, JIANG D Q, et al. In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix[J]. Acta Materialia,2017,130:297-309. doi: 10.1016/j.actamat.2017.03.052
    [10] JIANG D Q, HAO S J, ZHANG J, et al. In situ synchrotron investigation of the deformation behavior of nanolamellar Ti5Si3/TiNi composite[J]. Scripta Materialia,2014,78-79:53-56. doi: 10.1016/j.scriptamat.2014.01.034
    [11] 李传吉, 林建国, 张德闯, 等. 纳米SiO2颗粒增强NiTi基复合材料的制备及组织性能研究[J]. 稀有金属材料与工程, 2012, 41(8):1385-1389. doi: 10.3969/j.issn.1002-185X.2012.08.015

    LI C J, LIN J G, ZHANG D C, et al. Preparation and microstructure properties of nano-SiO2 particles reinforced NiTi matrix composites[J]. Rare Metal Materials and Engineering,2012,41(8):1385-1389(in Chinese). doi: 10.3969/j.issn.1002-185X.2012.08.015
    [12] FARVIZI M, EBADZADEH T, VAEZI M R, et al. Microstructural characterization of HIP consolidated NiTi-nano Al2O3 composites[J]. Journal of Alloys and Compounds,2014,606:21-26. doi: 10.1016/j.jallcom.2014.03.184
    [13] FARVIZI M, EBADZADEH T, VAEZI M R, et al. Effect of starting materials on the wear performance of NiTi-based composites[J]. Wear,2015,334-335:35-43. doi: 10.1016/j.wear.2015.04.011
    [14] FARVIZI M, AKBARPOUR M R, AHN D H, et al. Compressive behavior of NiTi-based composites reinforced with alumina nanoparticles[J]. Journal of Alloys and Compounds,2016,688:803-807.
    [15] JOHANSEN K, VOGGENREITER H, EGGELER G. On the effect of TiC particles on the tensile properties and on the intrinsic two way effect of NiTi shape memory alloys produced by powder metallurgy[J]. Materials Science and Engineering A,1999,273–275:410-414.
    [16] VAIDYANATHAN R, BOURKE M A M, DUNAND D C. Stress-induced martensitic transformations in NiTi and NiTi-TiC composites investigated by neutron diffraction[J]. Office of Scientific & Technical Information Technical Reports,1999,275(99):404-409.
    [17] FUKAMI-USHIRO K L, MARI D, DUNAND D C. NiTi and NiTi-TiC composites Part II: Compressive mechanical properties[J]. Metallurgical and Materials Transactions A,1996,27(1):183-191. doi: 10.1007/BF02647758
    [18] MARI D, BATAILLARD L, DUNAND D C, et al. Martensitic transformation of NiTi and NiTi-TiC composites[J]. Journal de Physique IV,1995,5(C8):659-664.
    [19] LEE J, HWANG J, LEE D, et al. Enhanced mechanical properties of spark plasma sintered NiTi composites reinforced with carbon nanotubes[J]. Journal of Alloys and Compounds,2014,617:505-510. doi: 10.1016/j.jallcom.2014.08.091
    [20] FENG X, SUI J H, CAI W. Processing of multi-walled carbon nanotube-reinforced TiNi composites by hot pressed sintering[J]. Journal of Composite Materials,2011,45(15):1553-1557. doi: 10.1177/0021998310383734
    [21] CAI W, FENG X, SUI J H. Preparation of multi-walled carbon nanotube-reinforced TiNi matrix composites from elemental powders by spark plasma sintering[J]. Rare Metals,2012,31(1):48-50. doi: 10.1007/s12598-012-0461-3
    [22] 江鸿杰. 轻质高强高阻尼Ni-Ti形状记忆合金与复合材料的制备及其性能研究[D]. 广州: 华南理工大学, 2013.

    JIANG H J. Fabrication and properties of lightweight, high strength and high damping Ni-Ti shape memory alloy and composites[D]. Guangzhou: South China University of Technology, 2013(in Chinese).
    [23] JIANG H J, CAO S, KE C B, et al. Nano-sized SiC particle reinforced NiTi alloy matrix shape memory composite[J]. Materials Letters,2013,100(6):74-77.
    [24] YONEZAWA T, YOSHIMURA T, UMEDA J, et al. Strengthening mechanism of TiNi shape memory sintered alloy using elemental mixtures of pre-alloyed TiNi powder and TiO2 particles[J]. Transaction of JWRI,2012,41(2):55-59.
    [25] GAO X, ZHANG X X, GENG L. Strengthening and fracture behaviors in SiCP/Al composites with network particle distribution architecture[J]. Materials Science and Engineering A,2019,740-741:353-362. doi: 10.1016/j.msea.2018.10.105
    [26] YI X Y, SUN K S, GAO W H, et al. Microstructure design of the excellent shape recovery properties in (Ti, Hf)2Ni/Ti-Ni-Hf high temperature shape memory alloy composite[J]. Journal of Alloys and Compounds,2017,729:758-763. doi: 10.1016/j.jallcom.2017.09.242
    [27] YI X Y, MENG X L, CAI W, et al. Larger strain recovery characteristics of Ti-Ni-Hf shape memory alloy composite under compression[J]. Scripta Materialia,2018,153:90-93. doi: 10.1016/j.scriptamat.2018.05.006
    [28] YI X Y, WEN G Y, SUN K S, et al. Fabrication, characterization and potential application of larger bulk Ti-Ni-Hf high temperature shape memory alloy composite reinforced by hybrid particles[J]. Journal of Alloys and Compounds,2018,764:347-358. doi: 10.1016/j.jallcom.2018.06.084
    [29] YI X Y, SHEN G J, MENG X L, et al. The higher compressive strength (TiB+La2O3)/Ti-Ni shape memory alloy composite with the larger recoverable strain[J]. Composites Communications,2021,23:100583. doi: 10.1016/j.coco.2020.100583
  • 加载中
图(7)
计量
  • 文章访问数:  1371
  • HTML全文浏览量:  1093
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 录用日期:  2021-03-09
  • 网络出版日期:  2021-03-12
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回