留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管包裹聚磷酸铵协同Mg(OH)2构筑乙烯-醋酸乙烯酯共聚物复合材料及其火安全性能

李茁实 陆境一 董春 汪碧波 金志健 房权生 胡源

李茁实, 陆境一, 董春, 等. 碳纳米管包裹聚磷酸铵协同Mg(OH)2构筑乙烯-醋酸乙烯酯共聚物复合材料及其火安全性能[J]. 复合材料学报, 2022, 39(1): 182-192. doi: 10.13801/j.cnki.fhclxb.20210312.006
引用本文: 李茁实, 陆境一, 董春, 等. 碳纳米管包裹聚磷酸铵协同Mg(OH)2构筑乙烯-醋酸乙烯酯共聚物复合材料及其火安全性能[J]. 复合材料学报, 2022, 39(1): 182-192. doi: 10.13801/j.cnki.fhclxb.20210312.006
LI Zhuoshi, LU Jingyi, DONG Chun, et al. Construction of hierarchical structure of carbon nanotube-encapsulated ammonium polyphosphate/Mg(OH)2 and the synergistic effect on the fire safety of ethylene-vinyl acetate copolymer[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 182-192. doi: 10.13801/j.cnki.fhclxb.20210312.006
Citation: LI Zhuoshi, LU Jingyi, DONG Chun, et al. Construction of hierarchical structure of carbon nanotube-encapsulated ammonium polyphosphate/Mg(OH)2 and the synergistic effect on the fire safety of ethylene-vinyl acetate copolymer[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 182-192. doi: 10.13801/j.cnki.fhclxb.20210312.006

碳纳米管包裹聚磷酸铵协同Mg(OH)2构筑乙烯-醋酸乙烯酯共聚物复合材料及其火安全性能

doi: 10.13801/j.cnki.fhclxb.20210312.006
基金项目: 国家自然科学基金重大项目课题(51991352);江苏省科技成果转化专项(BA2018107)
详细信息
    通讯作者:

    胡源,博士,研究员,博士生导师,研究方向为新型阻燃剂和阻燃聚合物材料及安全工程相关材料 Email:yuanhu@ustc.edu.cn

  • 中图分类号: TQ328.3

Construction of hierarchical structure of carbon nanotube-encapsulated ammonium polyphosphate/Mg(OH)2 and the synergistic effect on the fire safety of ethylene-vinyl acetate copolymer

  • 摘要: 本文采用微胶囊法制备了具有多层次结构的碳纳米管包裹聚磷酸铵(APP@CNT)阻燃剂,在此基础上与Mg(OH)2复配,采用纳米复合技术制备了火安全的电线电缆用阻燃乙烯-醋酸乙烯酯共聚物(EVA)复合材料(APP@CNT/EVA-Mg(OH)2)。采用SEM、TGA、极限氧指数(LOI)、垂直燃烧(UL-94)、微型锥形量热仪(MCC),电子万能拉伸机和高阻计对阻燃EVA复合材料的结构与性能进行系统研究。结果表明,APP@CNT/EVA-Mg(OH)2的残炭率从2.4%上升至43.9%,氧指数高达38%,垂直燃烧达到UL-94 V-0级,热释放峰值(PHRR)比纯EVA下降了57.85%,总热释放(THR)下降了57.80%,屈服强度提高了408%,复合材料体积电阻率仍高达3.9×1015 Ω·cm。以上数据表明多层次结构APP@CNT协同Mg(OH)2阻燃EVA复合材料(APP@CNT/EVA-Mg(OH)2)具有良好的火安全性能。

     

  • 图  1  碳纳米管包裹聚磷酸铵(APP@CNT)的合成路线图

    APTES-APP—KH550 modified APP

    Figure  1.  Synthesis route of carbon nanotube-encapsulated ammonium polyphosphate (APP@CNT)

    图  2  APP、CNT和APP@CNT的FTIR图谱 (a) 和空气下的TGA (b)、DTG曲线 (c)

    Figure  2.  FTIR spectra of APP, CNT and APP@CNT (a), TGA curves (b) and DTG curves (c) under air atmosphere

    图  3  APP粉体 (a),APP@CNT ((b), (c)) 的SEM图像和CNT的TEM图像 (d)

    Figure  3.  SEM images of APP (a) and APP@CNT ((b), (c)) and TEM image of CNT (d)

    图  4  纯EVA (a)、CNT/EVA (b)、EVA-Mg(OH)2 (c)、APP/EVA-Mg(OH)2 (d) 和APP@CNT/EVA-Mg(OH)2 (e) 的内部微观形貌

    Figure  4.  SEM cross-sectional images of EVA composites pure EVA (a), CNT/EVA (b), EVA-Mg(OH)2 (c), APP/EVA-Mg(OH)2 (d), APP@CNT/EVA-Mg(OH)2 (e)

    图  5  EVA复合线缆材料的力学拉伸数据图示

    Figure  5.  Mechanical properties of these EVA composites

    图  6  EVA和EVA复合线缆材料的应力应变拉伸曲线 (a) 和拉伸强度、屈服强度柱状图 (b)

    Figure  6.  Stress-Strain curves (a) and tensile strength and yield strength (b) of EVA and EVA composites

    图  7  EVA和阻燃EVA体系总热释放(THR)曲线 (a) 和热释放速率(HRR)曲线 (b)

    Figure  7.  Total heat release (THR) (a) and heat release rate (HRR) (b) curves of EVA and EVA composites

    图  8  EVA及EVA复合材料的TGA (a) 及DTG (b) 测试曲线

    Figure  8.  TGA (a) and DTG (b) curves of EVA and EVA composites

    图  9  阻燃EVA复合线缆材料的体积电阻率

    Figure  9.  Volume resistivity of EVA and EVA composites

    表  1  阻燃乙烯-醋酸乙烯酯共聚物(EVA)复合材料的原料配比

    Table  1.   Formulations of the ethylene-vinyl acetate copolymer (EVA) and EVA composites

    SampleEVA/wt%Mg(OH)2/wt%APP/wt%APP@CNT/wt%
    EVA 100 0 0 0
    EVA-Mg(OH)2 40 60 0 0
    APP/EVA-Mg(OH)2 40 58 2 0
    APP@CNT/EVA-Mg(OH)2 40 58 0 2
    下载: 导出CSV

    表  2  EVA和阻燃EVA复合材料的力学拉伸测试数据

    Table  2.   Mechanical properties of EVA and EVA composites

    SamplesYield strength/MPaTensile strength/MPaElongation at break/%
    EVA 2.64±0.38 14.6±0.26 611±50
    EVA-Mg(OH)2 8.59±0.50 9.60±0.32 107±46
    APP/EVA-Mg(OH)2 9.33±0.23 10.5±0.15 108±61
    APP@CNT/EVA-Mg(OH)2 10.78±0.15 11.7±0.11 123±33
    下载: 导出CSV

    表  3  EVA和阻燃EVA复合材料的MCC数据

    Table  3.   MCC data and flame retardant test results of EVA and EVA composites

    SampleTHR/(kJ·g−1)Peak HRR/(W·g−1)LOI/vol%UL-94
    EVA 37.2 851.9 18 NR
    EVA-Mg(OH)2 16.2 358.6 36 V-1
    APP/EVA-Mg(OH)2 16.1 351.4 37 V-0
    APP@CNT/EVA-Mg(OH)2 15.7 359.1 38 V-0
    Notes: NR—No rating; THR—Total heat release; Peak HRR—Peak heat release rate; LOI—Limiting oxygen index; UL-94—Test for flammability of plastic materials for parts in devices and appliances.
    下载: 导出CSV

    表  4  EVA复合线缆材料的阻燃性能与文献报道的数据对比

    Table  4.   Comparison of EVA composites among this work and literatures

    SamplesLOI/vol%Peak HRR/(W·g−1)​​​​​​​Reference
    APP@CNT/EVA-Mg(OH)2 38 359.1 This work
    MH/MgAl-LDH/EVA 35 Not reported [29]
    MCAPP/MCPER/EVA 33 Not reported [30]
    PPUAPP/EVA 32.5 320 [31]
    CDAPP/EVA 29 408 [32]
    Notes: LDH—Layered double hydroxide; MCAPP—Silica gel microencapsulated ammonium polyphosphate; MCPER—Microencapsulated pentaerythritol; PPUAPP—Polyurethane@expandable graphite microencapsulated ammonium polyphosphate; CDAPP—Cyclodextrin microencapsulated ammonium polyphosphate.
    下载: 导出CSV

    表  5  EVA及EVA复合材料的热重测试数据

    Table  5.   TGA data of EVA and EVA composites

    SampleT5wt%/℃Tmax/℃Residues at 700℃/%
    T1maxT2max
    EVA 318.1 351.5 462.7 2.4
    EVA-Mg(OH)2 333.0 372.4 469.4 43.6
    APP/EVA-Mg(OH)2 330.4 365.0 469.5 43.7
    APP@CNT/EVA-Mg(OH)2 333.5 363.8 468.9 43.9
    Notes: T5wt%—Temperature when the samples loss 5wt%; Tmax—Temperature at the max decomposition rate; T1max and T2max—First and second stage temperature at the max decomposition rate, respectively.
    下载: 导出CSV
  • [1] 汤龙其, 令旭霞, 王士华, 等. 聚吡咯/碳纤维纸电热复合材料的制备及性能[J]. 复合材料学报, 2020, 37(6):1426-1433.

    TANG Longqi, LING Xuxia, WANG Shihua, et al. Preparation and properties of polypyrrole/carbon fiber paper electrothermal composites[J]. Acta Materiae Compositae Sinica,2020,37(6):1426-1433(in Chinese).
    [2] SHUAIY, CHIANG K, LINH et al. Performance enhancement of metal nanowirebased transparent electrodes by electrically driven nanoscale nucleation of metal oxides[J]. Nanoscale,2015,7:12698-12705. doi: 10.1039/C5NR02780B
    [3] 陈志杰, 郑玉婴, 张延兵, 等. 无卤阻燃乙烯-醋酸乙烯酯共聚物泡沫复合材料的制备及性能表征[J]. 复合材料学报, 2015, 32(3):649-656.

    CHEN Zhijie, ZHENG Yuyin ZHANG Yanbing, et al. Preparation and property characterization of halogen-free fire retardant ethylene-vinyl acetate copolymer foam compo-sites[J]. Acta Materiae Compositae Sinica,2015,32(3):649-656(in Chinese).
    [4] MENZEL R, BARG S, MIRANDA M, et al. Joule heating characteristics of emulsion-templated graphene aerogels[J]. Advanced Functional Materials,2015,25:28-36. doi: 10.1002/adfm.201401807
    [5] 刘继纯, 李行, 贺云鹏, 等. 纳米Mg(OH)2微胶囊红磷/乙烯-乙酸乙烯酯共聚物阻燃复合材料的性能[J]. 复合材料学报, 2019, 36(11):2530-2540.

    LIU Jichun, LI Xing, HE Yunpeng, et al. Properties of nano Mg(OH)2-microencapsulated red phosphorus/ethylene-vinyl acetate copolymer flame-retardant composites[J]. Acta Materiae Compositae Sinica,2019,36(11):2530-2540(in Chinese).
    [6] CHAI F, WANG G, LIU F, et al. Preparation and properties of flame-retardant neutron shielding material based on eva polymer reinforced by radiation modification[J]. Radiation Physics and Chemistry, 2020, 174: 108984.
    [7] ZHANG Y, HU Y, WANG J, et al. Engineering carbon nano-tubes wrapped ammonium polyphosphate for enhancing mechanical and flame retardant properties of poly(butylene succinate)[J]. Composites Part A: Applied Science & Manufacturing,2018,115:215-227. doi: 10.1016/j.compositesa.2018.09.020
    [8] ZOU N, NIE Q, ZHANG X, et al. Electrothermal regeneration by Joule heat effect on carbon cloth based MnO2 catalyst for long-term formaldehyde removal[J]. Chemical Engineering Journal,2019,357:1-10. doi: 10.1016/j.cej.2018.09.117
    [9] XING W, YANG W, YANG W, et al. Functionalized carbon nanotubes with phosphorus and nitrogencontaining agents: Effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocompo-sites[J]. ACS Applied Materials & Interfaces,2016,8:39, 26266-26274.
    [10] CHENG T, ZHANG Y, LAI W, et al. High-performance stretchable transparent electrodes based on silver nanowires synthesized via an eco-friendly halogen-free 1method[J]. Journal of Materials Chemistry C,2014,2(48):10369-10376. doi: 10.1039/C4TC01959H
    [11] WANG J, ZHANG D, ZHANG Y, et al. Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (CO and HCN) generation and fire hazard of thermoplastic polyurethane[J]. Journal of Hazardous Materials,2019,362:482-494. doi: 10.1016/j.jhazmat.2018.09.009
    [12] KONO A, SHIMIZU K, NAKANO H, et a1. Positive temperature-coefficient effect of electrical resistivity below melting point of poly(vinylidene fluoride) (PVDF) in Ni particle dispersed PVDF composites[J]. Polymer,2012,53(8):1760-1764. doi: 10.1016/j.polymer.2012.02.048
    [13] CHEN B, GAO W, SHEN J, et al. The multilayered distribution of intumescent flame retardants and its influence on the fire and mechanical properties of polypropylene[J]. Composites Science and Technology,2014,93:54-60. doi: 10.1016/j.compscitech.2013.12.022
    [14] PALACIOS J, PERERA R, ROSALES C, et al. Thermal degradation kinetics of PP/OMMT nanocomposites with mPE and EVA[J]. Polymer Degradation and Stability,2012,97(5):729-737. doi: 10.1016/j.polymdegradstab.2012.02.009
    [15] ZHAO H, WU Z, WANG S, et a1. Concrete pavement deicing with carbon fiber heating wires[J]. Cold Regions Science and Technology,2011,65(3):413-420. doi: 10.1016/j.coldregions.2010.10.010
    [16] YANG T, YANG Z, SINGLA M, et a1. Experimental study on carbon fiber tape-based deicing technology[J]. Journal of Cold Regions Engineering,2012,26(2):55-70. doi: 10.1061/(ASCE)CR.1943-5495.0000038
    [17] ASTM. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (Oxygen index): ASTM D2863—2017[S]. West Conshohocken: ASTM, 2017.
    [18] ASTM. Standard test method for measuring the comparative burning characteristics of solid plastics in a vertical position: ASTM D3801[S]. West Conshohocken: ASTM, 2010.
    [19] ASTM. Standard test methods for vulcanized rubber and thermoplastic elastomers-Tension: ASTM D412—2015[S]. West Conshohocken: ASTM, 2015.
    [20] SINGLA M, CHANG C, SONG G, et a1. Automatic controls for the carbon fiber tape-based deicing technology[J]. Journal of Cold Regions Engineering,2014,28(1):1-17.
    [21] RAFIEE F, OTADI M, GOODARZI V, et al. Thermal and dynamic mechanical properties of PP/EVA nanocomposites containing organo-modified layered double hydroxides[J]. Composites Part B: Engineering,2016,103:122-130. doi: 10.1016/j.compositesb.2016.08.013
    [22] ZHANG W, BI E, LI M, et al. Synthesis of Ag/RGO compo-site as effective conductive ink filler for flexible inkjet printing electronics[J]. Colloids Surfaces A: Physicochemical Engineering Aspects,2016,490(12):232-240.
    [23] ALOTAIBI F, TUNG T, NINE M, et al. Silver nanowires with pristine graphene oxidation barriers for stable and high performance transparent conductive films[J]. ACS Applied Nano Materials,2018,1:2249-2260. doi: 10.1021/acsanm.8b00255
    [24] LAN W, CHEN Y, YANG Z, et al. Ultraflexible transparent film heater made of Ag nanowire/PVA composite for rapid-response thermotherapy pads[J]. ACS Applied Materials & Interfaces,2017,9:6644-6651.
    [25] GUPTA R, RAO K, SRIVASTAVA K, et al. Spray coating of crack templates for the fabrication of transparent conductors and heaters on flat and curved surface[J]. ACS Applied Materials & Interfaces,2014,6:13688-13696.
    [26] 程博, 李定华, 吴凡等. 不同蒙脱土Al(OH)3/乙烯-醋酸乙烯酯复合材料力学性能和阻燃性能的影响[J]. 复合材料学报, 2017, 34(12):2715-2721.

    CHENG Bo, LI Dinghua, WU Fan et al. Effect of montmorillonite type on mechanical and flame retarded properties of Al(OH)3/ethylene vinyl acetate copolymer composites[J]. Acta Materiae Compositae Sinica,2017,34(12):2715-2721(in Chinese).
    [27] WANG B, ZHOU K, WANG L, et al. Enhancement on physical properties of flame retarded ethylene-vinyl acetate copolymer/ferric pyrophosphate composites through electron beam irradiation[J]. Composites Part B: Engineering,2012,43:641-646. doi: 10.1016/j.compositesb.2011.08.027
    [28] WANG B, SHENG H, SHI Y, et al. Recent advances for microencapsulation of flame retardant[J]. Polymer Degradation and Stability,2015,113:96-109. doi: 10.1016/j.polymdegradstab.2015.01.008
    [29] DING Y, GUI Z, ZHU J, et al. Exfoliated poly(methyl methacrylate)/mgfe layered double hydroxide nanocomposites with small inorganic loading and enhanced properties[J]. Materials Research Bulletin,2008,43:3212-3220. doi: 10.1016/j.materresbull.2008.03.002
    [30] WANG B, TAI Q, NIE S, et al. Electron beam irradiation cross linking of halogen-free flame-retardant ethylene vinyl acetate (EVA) copolymer by silica gel microencapsulated ammonium polyphosphate and char-forming agent[J]. Industry Engineering Chemistry Research,2011,50:5596-5605. doi: 10.1021/ie102394q
    [31] WANG B, HU S, ZHAO K, et al. Preparation of polyurethane microencapsulated expandable graphite, and its application in ethylene vinyl acetate copolymer containing silica-gel microencapsulated ammonium polyphosphate[J]. Industry Engineering Chemistry Research,2011,50:11476-11484. doi: 10.1021/ie200886e
    [32] WANG B, WANG X, TANG G, et al. Preparation of silane precursormicro encapsulated intumescent flame retardant and its enhancement on the properties of ethylene-vinyl acetate copolymer cable[J]. Composites Science and Technology,2012,72:1042-1048. doi: 10.1016/j.compscitech.2012.03.022
    [33] LU J, ZHANG Y, TAO Y, et al. Self-healable castor oil-based waterborne polyurethane/MXene film with outstanding electromagnetic interference shielding effectiveness and excellent shape memory performance[J]. Journal of Colloid and Interface Science,2021(558):164-174.
    [34] TIAN W, ZHANG Y, LIU J, et al. Rapid electrothermal response and excellent flame retardancy of ethylene-vinyl acetate electrothermal film[J]. Polymer of Advanced Technologies,2020,31:1088-1098. doi: 10.1002/pat.4843
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  874
  • HTML全文浏览量:  340
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-20
  • 修回日期:  2021-02-11
  • 录用日期:  2021-03-01
  • 网络出版日期:  2021-03-12
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回