留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

本征导热高分子材料研究进展

周文英 王蕴 曹国政 曹丹 李婷 张祥林

周文英, 王蕴, 曹国政, 等. 本征导热高分子材料研究进展[J]. 复合材料学报, 2021, 38(7): 2038-2055. doi: 10.13801/j.cnki.fhclxb.20210312.001
引用本文: 周文英, 王蕴, 曹国政, 等. 本征导热高分子材料研究进展[J]. 复合材料学报, 2021, 38(7): 2038-2055. doi: 10.13801/j.cnki.fhclxb.20210312.001
ZHOU Wenying, WANG Yun, CAO Guozheng, et al. Progress in intrinsic thermally conductive polymers[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2038-2055. doi: 10.13801/j.cnki.fhclxb.20210312.001
Citation: ZHOU Wenying, WANG Yun, CAO Guozheng, et al. Progress in intrinsic thermally conductive polymers[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2038-2055. doi: 10.13801/j.cnki.fhclxb.20210312.001

本征导热高分子材料研究进展

doi: 10.13801/j.cnki.fhclxb.20210312.001
基金项目: 国家自然科学基金(51577154)
详细信息
    通讯作者:

    周文英,博士,教授,博士生导师,研究方向为导热电子封装与电气绝缘聚合物电介质材料 E-mail:wyzhou2004@163.com

  • 中图分类号: TB332;TQ311

Progress in intrinsic thermally conductive polymers

  • 摘要: 导热高分子复合材料因轻质、设计自由度大及易加工等优势获得了广泛的工业应用,但也面临着热导率k与介电强度Eb之间无法协同提高的严峻问题,严重影响和限制了其在高压电力绝缘设备领域的工业应用。而基于提高无序结构聚合物的结构有序性而获得本征导热高分子(ITCP)的策略,不但同步提高Ebk,还保留了其自身卓越的综合性能。本文讨论了本征聚合物的导热机制,系统分析了本征k的影响因素,综述了两类不同结构ITCP的研究进展,探讨了聚合物微结构、取向、氢键作用、液晶基元及固化剂、加工方式等因素对本征k的影响机制,阐述了提高聚合物有序结构及本征k的途径。最后总结了当前ITCP研究中存在的问题及未来研究方向,综合性能优异的ITCP在高密度封装微电子、高电压及大功率电力设备等领域具有重要用途,代表了导热高分子的未来发展方向。

     

  • 图  1  热塑性本征导热高分子材料(ITCP)常见制备方法[17]

    Figure  1.  Common preparation methods of intrinsic thermally conductive polymers (ITCP) thermoplastics[17]

    图  2  结晶和非晶热塑性聚合物取向结构示意图[1-2]

    Figure  2.  Schematic illustration of orientation structure of crystalline and amorphous thermoplastics[1-2]

    图  3  串晶对薄膜的面内取向及厚度方向导热性能的影响机制及实验结果[26]

    Figure  3.  Influence mechanism of shish-kebab on orientation structure and thermal conductivity in in-plane and out-plane direction of film, and experimental results [26]

    图  4  剪切诱导聚丁烯(PB-n)近晶相折叠链片晶沿不同方向的取向结构示意图[28]

    Figure  4.  Schematic illustration for orientation structure along different directions of smectic phase polybutylene (PB-n) crystal from folded chain induced by shear[28]

    图  5  基于氢键的小分子热桥结构对分子链间导热通路的影响机制示意图[30-31]

    Figure  5.  Schematic illustration of influence of small molecular thermal bridge structure on heat conduction pathway between molecular chains based on hydrogen bond [30-31]

    图  6  氢键对共混聚合物热导率k影响机制及结果[34]

    Figure  6.  Effect of hydrogen bond on thermal conductivity k blend polymer and corresponding thermal conductivity results[34]

    图  7  液晶基元对聚乙烯醇(PVA)结构及导热影响示意图

    Figure  7.  Schematic illustration of effect of liquid crystal units on polyvinyl alcohol (PVA) structure and thermal conductivity

    图  8  液晶基元自组装结构对声子导热影响示意图

    Figure  8.  Schematic illustration of influence of self-assembly structure of liquid crystal unit on phonon transfer

    图  9  液晶基元有序自组装与无序交联竞争示意图

    Figure  9.  Schematic illustration for competition between self-assembly ordered structure and cross-linking disordered structure of liquid crystal units

    图  10  碟状液晶自组装柱状晶体及导热通路示意图[53]

    Figure  10.  Schematic illustration of columnar crystal resulting from self-assembled disk liquid crystal units, and heat conduction pathways[53]

    图  11  液晶环氧与导热粒子间的协同导热效应

    Figure  11.  Synergistic effect in heat conduction between liquid crystal epoxy matrix and thermal conductive particles

    表  1  不同结构的 ITCP

    Table  1.   Various ITCP with different structures

    CatagoryProcessing methodPolymersThermal conductivity/(W(m·K)−1)NoteReference
    Thermoplas-
    tics
    Tensile orientationPE nano-fiber104Draw ratio 400[5]
    PE film1.2, 0.5 (vertical)Draw ratio 5[21]
    UHMWPE60Kudat flow, Draw ratio 110[20]
    Spin orientationPEO nano-fiber13-29Electrospinning[18]
    PE nano-fiber9.3Electrospinning 45 kV[19]
    Hydrogen bondPAA/PVA0.35φPVA=0.4[27]
    PAA/PAP, PAP/PVA1.1, 0.5φPAP=0.3[29]
    PVA/alanine, ethanol amine0.55, 0.52Micromolecular crystal[26]
    Shear orientationBulk PE3.3Solid extrusion[22]
    PB-n1.2 (vertical)Injecting molding[23]
    Polyhexylthiophene3.8Spin coating[24]
    Liquid crystal moleculesPVA, LCM1.2Self-assembled LCM in PVA[30]
    PVA, liquid crystal organosilicon0.74[31]
    OCVDPolythiophene2.2Bottom-up growth[32]
    Nano templatePolythiophene fiber (amorphous)4.4Electropolymerization[6]
    Electrostatic interactionPAA1.2Adjusting pH by sodium hydroxide[33]
    Cross-linked
    polymers
    Adjusting LC dispersion in the disordered cross-linked networkBiphenyl liquid crystal epoxy1.2DDM curing[39]
    Liquid crystal epoxy1.25DETDA[41]
    Liquid crystal epoxy1.16DDM[44]
    Biphenyl liquid crystal epoxy0.48Cationic curing agent[46]
    Liquid crystal epoxy0.4Ursol curing agent[47]
    Liquid crystal epoxy0.8DDM, 2 T magenitic[49]
    Organosilicone LCM0.81-0.83LC curing agent[38]
    LC with C=C and —SH3Orientation, photocuring[48]
    T6EE93.56 (vertical)Electric field induced orientation, photocuring[50]
    Notes: PE—Polyethylene; UHMWPE—Ultrahigh molecular weight polyethylene; PEO—Polyethylene oxide; PAA—polyacrylic acid; PVA—Polyvinyl alcohol; PAP—Propargyl alcohol propoxylate; PB-n—Polybutylene; LCM—Liquid crystal molecule; LC—Liquid crystal; DDM—4,4'-Methylenedianiline; T6EE9—Highly conjugated diphenylacetylene sulfur-ene liquid crystal monomer; φPVA—Mole fraction of PVA; φPAP—Mole fraction of PAP.
    下载: 导出CSV
  • [1] 周文英, 党智敏, 丁小卫, 等. 聚合物基导热复合材料[M]. 北京: 国防工业出版社, 2017.

    ZHOU W Y, DANG Z M, DING X W, et al. Heat conductive polymer composites[M]. Beijing: National Defense Industry Press, 2017(in Chinese).
    [2] CHEN H Y, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85. doi: 10.1016/j.progpolymsci.2016.03.001
    [3] XU X F, CHEN J, ZHOU J, et al. Thermal conductivity of polymers and their nanocomposites[J]. Advanced Materials,2018,30(17):1705544. doi: 10.1002/adma.201705544
    [4] HUANG C L, QIAN X, YANG R G. Thermal conductivity of polymers and polymer nanocomposites[J]. Materials Science & Engineering R: Reports,2018,132:1-22.
    [5] GUO Y, RUAN K, SHI X, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology,2020,193:108134. doi: 10.1016/j.compscitech.2020.108134
    [6] CHAUDHRY A U, MABROUK A N, ABDALA A. Thermally enhanced polyolefin composites: Fundamentals, progress, challenges, and prospects[J]. Science and Technology of Advanced Materials,2020,21(1):737-766. doi: 10.1080/14686996.2020.1820306
    [7] PRADHAN S S, UNNIKRISHNAN L, MOHANTY S, et al. Thermally conducting polymer composites with EMI shielding: A review[J]. Journal of Electronic Materials,2020,49(3):1749-1764. doi: 10.1007/s11664-019-07908-x
    [8] ZHAN H, NIE Y, CHEN Y, et al. Thermal transport in 3D nanostructures[J]. Advanced Functional Materials,2020,30(8):1903841. doi: 10.1002/adfm.201903841
    [9] FENG C P, CHEN L B, TIAN G L, et al. Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 W·m−1·K−1[J]. Chemical Engineering Journal,2020,392:123784. doi: 10.1016/j.cej.2019.123784
    [10] SHEN S, HENRY A, TONG J, et al. Polyethylene nanofibres with very high thermal conductivities[J]. Nature Nanotechnology,2010,5(4):251-255. doi: 10.1038/nnano.2010.27
    [11] SINGH V, BOUGHER T L, WEATHERS A, et al. High thermal conductivity of chain-oriented amorphous polythiophene[J]. Nature Nanotechnology,2014,9(5):384-390. doi: 10.1038/nnano.2014.44
    [12] LUO D, HUANG C L, HUANG Z. Decreased thermal conductivity of polyethylene chain influenced by short chain branching[J]. Journal of Heat Transfer-Transactions of the ASME,2018,140(3):31302. doi: 10.1115/1.4038003
    [13] ZHANG T, LUO T F. Role of chain morphology and stiffness in thermal conductivity of amorphous polymers[J]. Journal of Physical Chemistry B,2016,120(4):803-812. doi: 10.1021/acs.jpcb.5b09955
    [14] LIU J, JU S H, DING Y F, et al. Size effect on the thermal conductivity of ultrathin polystyrene films[J]. Applied Physics Letters,2014,104(15):153110. doi: 10.1063/1.4871737
    [15] MA H, TIAN Z T. Effects of polymer chain confinement on thermal conductivity of ultrathin amorphous polystyrene films[J]. Applied Physics Letters,2015,107(7):73111. doi: 10.1063/1.4929426
    [16] SANTOS W N D, SOUSA J A D, GREGORIO R. Thermal conductivity behaviour of polymers around glass transition and crystalline melting temputeratures[J]. Polymer Testing,2013,32(5):987-994. doi: 10.1016/j.polymertesting.2013.05.007
    [17] DINPAJOOH M, NITZAN A. Thermal conduction in polymer chains with controlled end-end distance[J]. Journal of Chemical Physics,2020,153(16):164903. doi: 10.1063/5.0023085
    [18] ZAO J H, JIANG J W, WEI N, et al. Thermal conductivity dependence on chain length in amorphous polymers[J]. Journal of Applied Physics,2013,113(18):184304. doi: 10.1063/1.4804237
    [19] WANG X J, HO V, SEGALMAN R A, et al. Thermal conductivity of high-modulus polymer fibers[J]. Macromolecules,2013,46(12):4937-4943. doi: 10.1021/ma400612y
    [20] CHOY C L, FEI Y, XI T G. Thermal conductivity of gel-spun polyethylene fibers[J]. Journal of Polymer Science Part B: Polymer Physics,1993,31(3):365-370. doi: 10.1002/polb.1993.090310315
    [21] XU X F, ZHOU J, CHEN J. Thermal transport in conductive polymer-based materials[J]. Advanced Functional Materials,2020,30(8):1904704. doi: 10.1002/adfm.201904704
    [22] CHOY C L, WONG Y W, LAU K W E, et al. Thermal conductivity and thermal expansivity of thermotropic liquid crystalline polymers[J]. Journal of Polymer Science Part B: Polymer Physics,1995,33(14):2055-2064. doi: 10.1002/polb.1995.090331407
    [23] LU C H, CHIANG S W, DU H D, et al. Thermal conductivity of electrospinning chain-aligned polyethylene oxide[J]. Polymer,2017,115:52-59. doi: 10.1016/j.polymer.2017.02.024
    [24] MA J, ZHANG Q, MAYO A, et al. Thermal conductivity of electrospun polyethylene nanofibers[J]. Nanoscale,2015,7(40):8-11.
    [25] KUNITSKI M, EICHE N, HUBER P, et al. Double-slit photoelectron interference in strong-field ionization of the neon dimer[J]. Nature Communications,2019,10(1):1-7. doi: 10.1038/s41467-018-07882-8
    [26] ZHANG R C, HUANG Z H, SUN D, et al. New insights into thermal conductivity of uniaxially stretched high density polyethylene films[J]. Polymer,2018,154:42-47. doi: 10.1016/j.polymer.2018.08.078
    [27] HUANG Y F, WANG Z G, YU W C, et al. Achieving high thermal conductivity and mechanical reinforcement in ultrahigh molecular weight polyethylene bulk material[J]. Polymer,2019,180:121760. doi: 10.1016/j.polymer.2019.121760
    [28] YOSHIHARA S, EZAKI T, NAKAMURAA M, et al. Enhanced thermal conductivity of thermoplastics by lamellar crystal alignment of polymer matrices[J]. Macromolecular Chemistry and Physics,2012,213(21):2213-2219. doi: 10.1002/macp.201200317
    [29] FENG X H, LIU G Q, XU S, et al. 3-Dimensional anisotropic thermal transport in microscale poly(3-hexylthiophene) thin films[J]. Polymer,2013,54(7):1887-1895. doi: 10.1016/j.polymer.2013.01.038
    [30] ZHANG L, RUESCH M, ZHANG X L, et al. Tuning thermal conductivity of crystalline polymer nanofibers by interchain hydrogen bonding[J]. RSC Advances,2015,5(107):87981-87986. doi: 10.1039/C5RA18519J
    [31] MEHRA N, LI Y, ZHU J. Small organic linkers with hybrid terminal groups drive efficient phonon transport in polymers[J]. Journal of Physical Chemistry C,2018,122(19):10327-10333. doi: 10.1021/acs.jpcc.8b01991
    [32] XIE X, LI D Y, TSAI T H, et al. Thermal conductivity, heat capacity, and elastic constants of water-soluble polymers and polymer blends[J]. Macromolecules,2016,49(3):972-978. doi: 10.1021/acs.macromol.5b02477
    [33] MATHUE V, SHARMA K. Thermal response of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends[J]. Heat and Mass Transfer,2016,52(12):2901-2911. doi: 10.1007/s00231-016-1779-4
    [34] KIM G H, LEE D L, SHANKER A, et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions[J]. Nature Nanotechnology,2014,14(3):295-300.
    [35] LI C G, LI Y, GONG C D, et al. High thermal conductivity of liquid crystalline monomer poly(vinyl alcohol) dispersion films containing microscopic-ordered structure[J]. Journal of Applied Polymer Science,2021,138(6):49791. doi: 10.1002/app.49791
    [36] LI Y, PAN P, LIU C, et al. Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity[J]. Journal of Polymer Engineering,2020,40(7):573-581. doi: 10.1515/polyeng-2020-0004
    [37] XU Y, WANG X X, ZHOU J, et al. Molecular engineered conjugated polymer with high thermal conductivity[J]. Science Advances,2018,4(3):eaar3031. doi: 10.1126/sciadv.aar3031
    [38] SHANKER A, LI C, KIM G H, et al. High thermal conductivity in electrostatically engineered amorphous polymers[J]. Science Advances,2017,3(7):e1700342. doi: 10.1126/sciadv.1700342
    [39] KATO T, NAGAHARA T, AGAIR Y, et al. Relation between thermal conductivity and molecular alignment direction of free-standing film aligned with rubbing method[J]. Journal of Polymer Science Part B: Polymer Physics,2005,43(24):3591-3599. doi: 10.1002/polb.20628
    [40] YU S, PARK C, HONG S M, et al. Thermal conduction behaviors of chemically cross-linked high-density polyethylenes[J]. Thermochimica Acta,2014,583:67-71. doi: 10.1016/j.tca.2014.03.018
    [41] LI S H, YU X X, BAO H, et al. High thermal conductivity of bulk epoxy resin by bottom-up parallel-linking and strain: A molecular dynamics study[J]. Journal of Physical Chemistry C,2018,122(24):13140-13147. doi: 10.1021/acs.jpcc.8b02001
    [42] LIN Y, HUANG X Y, CHEN J, et al. Epoxy thermoset resins with high pristine thermal conductivity[J]. High Voltage,2017,2(3):139-146. doi: 10.1049/hve.2017.0120
    [43] LI Y, LI C G, ZHANG L, et al. Effect of microscopic-ordered structures on intrinsic thermal conductivity of liquid-crystalline polysiloxane[J]. Journal of Materials Science: Materials in Electronics,2019,30(9):8329-8338. doi: 10.1007/s10854-019-01150-1
    [44] AKATSUKA M, TAKEZAWA Y. Study of high thermal conductive epoxy resins containing controlled high-order structures[J]. Journal of Applied Polymer Science,2003,89(9):2464-2467. doi: 10.1002/app.12489
    [45] YANG X, ZHU J, YANG D, et al. High efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers[J]. Journal of Applied Polymer Science,2020,185:107784.
    [46] YANG X T, ZHONG X, ZHANG J L, et al. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance[J]. Journal of Materials Science & Technology,2020,68:209-215.
    [47] MO H, HUANG X, LIU F, et al. Nanostructured electrical insulating epoxy thermosets with high thermal conductivity, high thermal stability, high glass transition temperatures and excellent dielectric properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2015,22(2):906-915. doi: 10.1109/TDEI.2015.7076791
    [48] AKATSUKA M, TAKEZAWA Y, FARREN C. Development of epoxy resins with controlled high order structures having excellent heat release properties[J]. IEEJ Transactions on Fundamentals and Materials,2003,123(7):687-692. doi: 10.1541/ieejfms.123.687
    [49] SONG S, KATAGI H, TAKEZAWA Y. Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure[J]. Polymer,2012,53(20):4489-4492. doi: 10.1016/j.polymer.2012.07.065
    [50] AKATSUKA M, TAKAZAWA Y, SUGAWARA K. Thermosetting resin compounds: US, 20060276568[P]. 2006-12-07.
    [51] ISLAM A M, LIM H, YOU N H, et al. Enhanced thermal conductivity of liquid crystalline epoxy resin using controlled linear polymerization[J]. ACS Macro Letters,2018,7(10):1180-1185. doi: 10.1021/acsmacrolett.8b00456
    [52] KIM Y, YEO H, YOU N H, et al. Highly thermal conductive resins formed from wide-temperature-range eutectic mixtures of liquid crystalline epoxies bearing diglycidyl moieties at the side positions[J]. Polymer Chemistry,2017,8(18):2806-2814. doi: 10.1039/C7PY00243B
    [53] KANG D G, PARK M, KIM D Y, et al. Heat transfer organic materials: Robust polymer films with the outstanding thermal conductivity fabricated by the photopolymerization of uniaxially oriented reactive discogens[J]. ACS Applied Materials & Interfaces,2016,8(44):30492-30501.
    [54] HARADA M, OCHI M, TOBITA M, et al. Thermal-conductivity properties of liquid-crystalline epoxy resin cured under a magnetic field[J]. Journal of Polymer Science Part B: Polymer Physics,2003,41(14):1739-1743. doi: 10.1002/polb.10531
    [55] GE S J, ZHAO T P, WANG M, et al. A homeotropic main-chain tolane type liquid crystal elastomer film exhibiting high anisotropic thermal conductivity[J]. Soft Matter,2017,13(32):5463-5468. doi: 10.1039/C7SM01154G
    [56] RASHIDI V, COYLE E J, SEBECK K, et al. Thermal conductance in cross-linked polymers: Effects of non bonding interactions[J]. Journal of Physical Chemistry B,2017,121(17):4600-4609. doi: 10.1021/acs.jpcb.7b01377
    [57] TONGPHENG B, YU J C, ANDERSSON O. Effects of cross-links, pressure and temperature on the thermal properties and glass transition behavior of polybutadiene[J]. Physical Chemistry Chemical Physics,2011,13(33):15047-15054. doi: 10.1039/c1cp20785g
    [58] XIONG X, YANG M, LIU C, et al. Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation[J]. Journal of Applied Physics,2017,122(3):984-987.
    [59] 祝大同. 高导热性树脂开发与应用的新进展(2): 对高导热性基板材料制造新技术的综述[J]. 印制电路信息, 2012(11):15-20.

    ZHU D T. Development of research and application of resin with high thermal conductivity(2): Review of new technology of heat dissipation substrate material[J]. Printed Circuit Information,2012(11):15-20(in Chinese).
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1797
  • HTML全文浏览量:  1258
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-18
  • 录用日期:  2021-03-05
  • 网络出版日期:  2021-03-12
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回