留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固化剂混掺对高温下CFRP板-钢板界面黏结性能的影响

李游 李传习 郑辉 张海萍 刘方成

李游, 李传习, 郑辉, 等. 固化剂混掺对高温下CFRP板-钢板界面黏结性能的影响[J]. 复合材料学报, 2021, 38(12): 4073-4089. doi: 10.13801/j.cnki.fhclxb.20210311.005
引用本文: 李游, 李传习, 郑辉, 等. 固化剂混掺对高温下CFRP板-钢板界面黏结性能的影响[J]. 复合材料学报, 2021, 38(12): 4073-4089. doi: 10.13801/j.cnki.fhclxb.20210311.005
LI You, LI Chuanxi, ZHENG Hui, et al. Effect of curing agent mixing on interfacial bond behavior of glued CFRP plate-steel plate at elevated temperature[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4073-4089. doi: 10.13801/j.cnki.fhclxb.20210311.005
Citation: LI You, LI Chuanxi, ZHENG Hui, et al. Effect of curing agent mixing on interfacial bond behavior of glued CFRP plate-steel plate at elevated temperature[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4073-4089. doi: 10.13801/j.cnki.fhclxb.20210311.005

固化剂混掺对高温下CFRP板-钢板界面黏结性能的影响

doi: 10.13801/j.cnki.fhclxb.20210311.005
基金项目: 国家自然科学基金(51778069;52078059);湖南省自然科学基金(2020JJ5143),湖南省教育厅优秀青年项目(20B182)
详细信息
    通讯作者:

    李传习,博士,教授,博士生导师,研究方向为桥梁新材料、新技术、新结构 E-mail:lichuanxi2@163.com

  • 中图分类号: TB332;TG496

Effect of curing agent mixing on interfacial bond behavior of glued CFRP plate-steel plate at elevated temperature

  • 摘要: 针对单一固化剂难以兼顾耐热性和韧性的不足,研究了耐热性能较好的缩胺105和韧性较好的聚醚胺D230两种固化剂混掺对纳米SiO2环氧胶黏剂玻璃转变温度及高温下基本力学性能的影响。按一定固化条件制作了30个胶黏剂拉伸试件、21个碳纤维增强树脂复合材料(CFRP)板-钢板双搭接试件,进行了高温及常温下的准静态拉伸试验、拉伸剪切试验,测试了相应胶黏剂的动态热机械性能,并与常用商品胶的耐热性能与力学性能进行比较,得到以下结论:随混掺固化剂中聚醚胺D230比重的增加,胶黏剂高温下的拉伸强度及弹性模量逐渐降低,断裂伸长率及应变能先增加后减小,缩胺105与聚醚胺D230两种固化剂混掺的推荐比例为1∶2。随固化温度的升高,具有固化剂混掺较佳比例的胶黏剂的玻璃转变温度有所提升,综合技术与经济因素,推荐(较佳)固化条件为90℃、2 h。推荐比例与推荐固化条件的纳米SiO2环氧胶黏剂在环境温度20~70℃之间的拉伸强度及韧性均大大优于常用商品胶黏剂。基于推荐比例与推荐固化工艺的纳米SiO2胶黏剂粘结的CFRP板-钢板搭接接头,在70℃服役温度下的荷载-位移曲线存在屈服段,承载能力(较采用单一缩胺105和单一聚醚胺D230固化剂的搭接试件分别提升了104.03%、64.43%)和延性(为采用单一缩胺105固化剂的搭接试件的2.5倍以上)均大幅提升。高温和常温下的黏结-滑移本构均为三线性四边形。胶黏剂在满足耐热性的同时,需尽可能提升其韧性,才能有效提升CFRP-钢搭接界面的力学性能。相比于常用商品胶黏剂,研制的推荐胶黏剂粘结的CFRP板-钢板搭接接头具有优越得多的承载能力和界面断裂能。

     

  • 图  1  固化剂的化学结构式

    Figure  1.  Chemical structure of curing agent

    图  2  胶黏剂拉伸试件的尺寸

    Figure  2.  Dimensions of the tensile specimen of the adhesive

    图  3  CFRP-钢双搭接接头的形式及应变片布置

    Figure  3.  CFRP-steel double lap joint form and strain gauge arrangement

    图  4  胶黏剂试件拉伸试验

    Figure  4.  Tensile test of adhesive samples

    图  5  胶黏剂动态热力学试验

    Figure  5.  Dynamic thermodynamic test of adhesive

    图  6  CFRP-钢双搭接试件拉伸试验

    Figure  6.  Tensile test of CFRP-steel double lap test piece

    图  7  70℃环境下胶黏剂的拉伸应力-应变曲线

    Figure  7.  Tensile stress-strain curves of adhesive at 70℃

    图  8  70℃环境下胶黏剂基本力学指标随固化剂混掺比的变化

    Figure  8.  Change of basic mechanical index of adhesive with the mixing ratio of curing agent at 70℃

    图  9  胶黏剂拉伸断面的SEM图像

    Figure  9.  SEM images of the tensile section of the adhesives

    图  10  胶黏剂的DMA动态热力学分析曲线

    Figure  10.  DMA dynamic thermodynamic analysis curves of adhesives

    图  11  CFRP-钢界面破坏模式

    Figure  11.  Failure modes of CFRP-steel interface

    图  12  CFRP-钢双搭接试件荷载-位移曲线

    Figure  12.  Load-displacement curves of CFRP-steel double lap test piece

    图  13  CFRP板表面应变分布

    Figure  13.  Strain distribution on the surface of CFRP plate

    图  14  CFRP板-钢板界面剪应力分布

    Figure  14.  Shear stress distribution at the CFRP plate-steel plate interface

    图  15  CFRP板-钢板界面黏结-滑移曲线

    Figure  15.  Bond-slip curves of CFRP plate-steel plate interface

    图  16  CFRP板-钢板界面黏结-滑移曲线比较

    Figure  16.  Comparison of the bond-slip curves at the CFRP-steel interface

    图  17  胶黏剂的DMA动态热力学分析曲线

    Figure  17.  DMA dynamic thermodynamic analysis curves of adhesives

    图  18  温度对GY34-90胶黏剂应力-应变曲线的影响

    Figure  18.  Effect of temperature on stress-strain curve of GY34-90 adhesive

    图  19  温度对不同胶黏剂的力学性能指标的影响比较

    Figure  19.  Comparison of the effect of temperature on the mechanical properties of different adhesives

    图  20  CFRP-钢界面黏结-滑移本构模型的比较

    Figure  20.  Comparison of bond-slip constitutive models at CFRP-steel interface

    图  21  CFRP板-钢板试件极限承载力的预测值与实验值比较

    Figure  21.  Comparison between the predicted and tested ultimate loads of CFRP-steel specimens

    表  1  胶黏剂配比

    Table  1.   Ratio of adhesive g

    CompositionType and amount of curing agentEpoxy resinNano-SiO2Thixotropic agentAcceleratorDefoaming agent
    GY31 C105 (35 g) 120 0.6 0.7 3 0.5
    GY32 C105 (23.33 g)+D230 (11.67 g) 120 0.6 0.7 3 0.5
    GY33 C105 (17.5 g)+D230 (17.5 g) 120 0.6 0.7 3 0.5
    GY34 C105(11.67 g)+D230 (23.33 g) 120 0.6 0.7 3 0.5
    GY35 D230 (35 g) 120 0.6 0.7 3 0.5
    Notes: C105—Condensationamine 105; D230—Amino-terminated polyoxypropylene D230.
    下载: 导出CSV

    表  2  碳纤维增强树脂复合材料(CFRP)板及钢板材料参数

    Table  2.   Material parameters of carbon fiber reinforced polymer (CFRP) plate and steel plate

    Material
    parameter
    CFRP1.4
    laminate
    CFRP2.0
    laminate
    Steel
    plate
    Thickness/mm 1.4 2.0 12
    Width/mm 50 50 50
    Tensile strength/MPa 2 263 2 433 514
    Elasticity modulus/GPa 161.2 162.8 206
    Elongation at break/% 1.65 1.62 -
    下载: 导出CSV

    表  3  固化剂对CFRP板-钢板双搭接试件试验结果的影响

    Table  3.   Effect of curing agent on test results of CFRP plate-steel plate double lap test piece

    Specimen
    number
    Ta/mmLimit displacement/mmUltimate load/kNAverage bond strength/MPaFailure
    mode
    ${D_{{\rm{max}}}}$Average${P_{{\rm{max}}}}$Average${\overline p _{\max }}$Average
    GY31-T1.4-CT90-ST70-1 1.09 2.29 109.30 5.5 b/d
    GY31-T1.4-CT90-ST70-2 1.12 2.28 2.11 92.99 101.87 4.7 5.1 b/d
    GY31-T1.4-CT90-ST70-3 1.05 1.76 103.32 5.2 b/d
    GY32-T1.4-CT90-ST70-1 1.05 2.02 96.98 4.9 d
    GY32-T1.4-CT90-ST70-2 1.08 1.97 1.89 95.08 90.43 4.8 4.5 d
    GY32-T1.4-CT90-ST70-3 1.10 1.69 79.24 4.0 d
    GY33-T1.4-CT90-ST70-1 1.04 3.56 160.11 8.0 d
    GY33-T1.4-CT90-ST70-2 1.09 4.31 4.02 179.24 171.12 9.0 8.6 d
    GY33-T1.4-CT90-ST70-3 1.12 4.20 174.02 8.7 d
    GY34-T1.4-CT90-ST70-1 1.06 5.16 211.18 10.6 d
    GY34-T1.4-CT90-ST70-2 1.09 4.85 4.99 205.64 207.85 10.3 10.4 d
    GY34-T1.4-CT90-ST70-3 1.12 4.98 206.73 10.3 d
    GY35-T1.4-CT90-ST70-1 1.11 3.92 135.84 6.8 d
    GY35-T1.4-CT90-ST70-2 1.05 3.61 3.76 115.38 126.41 5.8 6.3 d
    GY35-T1.4-CT90-ST70-3 1.07 3.75 128.01 6.4 b/d
    GY34-T2.0-CT90-ST70-1 1.06 6.71 225.40 11.3 b
    GY34-T2.0-CT90-ST70-2 1.09 7.46 7.06 232.59 229.15 11.6 11.5 a/b
    GY34-T2.0-CT90-ST70-3 1.03 7.02 229.46 11.5 a/b
    GY34-T2.0-CT90-ST25-1 1.02 4.42 204.20 10.2 d
    GY34-T2.0-CT90-ST25-2 1.10 4.69 4.01 208.99 205.10 10.5 10.3 d
    GY34-T2.0-CT90-ST25-3 1.06 4.11 202.11 10.1 d
    Notes: Specimen number GY**-**-**-**-**: GY—Initials of the phonetic alphabet of the curing agent, the character before the first “-”—Type of adhesive; Character after the first “-”—Thickness of CFRP board; Character after the second “-”—Curing temperature of specimens; Character after the third “-”—Service temperature of specimens; Character after the fourth “-”—Serial number of specimens in each group; Failure mode: a—CFRP and adhesive debonding failure; b—Steel and adhesive debonding failure; d—CFRP delamination.
    下载: 导出CSV

    表  4  CFRP-钢界面黏结-滑移本构参数

    Table  4.   Bond-slip constitutive parameters of CFRP-steel interface

    ParameterGY31-T1.4-
    CT90-ST70
    GY34-T1.4-
    CT90-ST70
    GY35-T1.4-
    CT90-ST70
    GY34-T2.0-
    CT90-ST70
    GY34-T2.0-
    CT90-ST25
    ${\tau _1}$/MPa 13.52 6.06 15.62 24.58
    ${\tau _{\rm{f}}}$/MPa 19.15 17.57 9.84 20.72 24.58
    ${\delta _1}$/mm 0.215 0.185 0.115 0.164 0.211
    ${\delta _2}$/mm 0.580 0.453 0.560 0.401
    ${\delta _{\rm{f}}}$/mm 0.400 0.575 0.637 0.758 0.518
    $K$/(MPa·mm−1) 89.07 73.08 52.70 95.24 116.49
    ${G_{\rm{f}}}$/(MPa·mm) 3.830 8.946 3.941 10.527 8.701
    Notes: τ1—Peak elastic shear stress; τf—Peak shear stress; δ1—Maximum elastic slip; δ2—Maximum plastic slip; δf—Ultimate slip; K—Interfacial stiffness; Gf—Interfacial fracture energy.
    下载: 导出CSV

    表  5  胶黏剂GY34的玻璃化转变温度

    Table  5.   Glass transition temperature of adhesive GY34

    Curing temperature of adhesiveTangential method Tg,S/℃E" method Tg,L/℃tanδ method Tg,T/℃
    GY34-25(25℃ 7 days) 68.1 70.7 79.5
    GY34-90(90℃ 2 h) 71.0 72.6 85.8
    GY34-110(110℃ 2 h) 70.4 75.3 89.8
    下载: 导出CSV

    表  6  本文胶黏剂与商品胶黏剂的主要力学性能指标

    Table  6.   Main mechanical properties of adhesives developed in this paper and commercial adhesives

    Name of
    adhesive
    Service
    temperature/℃
    Tensile
    strength/MPa
    Elongation
    at break/%
    Elastic
    modulus/MPa
    Strain energy/
    (N·mm−2)
    Tg,T/℃
    GY34 25 62.5 6.10 3 012.3 0.2936 85.8
    40 42.2 9.01 2 903.5 0.3092
    55 17.9 42.80 1 733.0 0.7175
    70 12.1 67.33 1 191.9 0.6806
    90 2.3 27.57 71.8 0.0391
    S&P Resin 220[22] 20 16.6 2.25 8 205.3 0.0284 60.0
    35 12.2 2.46 6 318.2 0.0188
    50 5.2 83.10 183.2 0.3421
    70 2.5 42.50 82.9 0.0568
    90 1.8 33.90 73.0 0.0374
    Mbraces Saturant[23] 20 24.8 3.27 1 322.9 0.0552 59.2
    40 4.2 8.25 283.2 0.0256
    60 0.3 0.55 100.1 0.0013
    Araldite2014[6] 25 25.0 0.96 4 140.0 0.0086 68.3
    40 20.1 1.17 3 010.0 0.0126
    55 15.4 1.60 2 320.0 0.0166
    70 8.4 2.45 1 090.0 0.0169
    Araldite420[6] 25 28.6 4.09 2 260.0 0.0865 43.6
    40 14.2 19.50 855.0 0.2720
    55 5.2 23.30 171.0 0.1130
    Sika30[6] 25 33.2 0.22 11 130.0 0.0098 47.8
    40 20.7 1.81 4 550.0 0.0284
    55 3.9 8.40 376.0 0.0385
    Calle1[6] 25 34.2 1.49 3 520.0 0.0232 63.2
    40 24.6 10.60 2 360.0 0.2380
    55 19.1 20.90 1 710.0 0.4090
    70 12.8 34.90 752.0 0.4120
    下载: 导出CSV

    表  7  CFRP板-钢板界面黏结-滑移本构参数的比较

    Table  7.   Comparison of bond-slip constitutive parameters of CFRP-steel interface

    Specimen number${\tau _1}$/MPa${\tau _{\rm{f}}}$/MPa${\delta _1}$/mm${\delta _2}$/mm${\delta _{\rm{f}}}$/mm$K$/(MPa·mm−1)${G_{\rm{f}}}$/(MPa·mm)
    GY34-T2.0-CT90-ST25 24.58 24.58 0.211 0.401 0.518 116.49 8.701
    GY34-T2.0-CT90-ST70 15.62 20.72 0.164 0.560 0.758 95.24 10.527
    CS-35[24] - 18.90 0.068 - 0.201 277.53 0.190
    CS-65[24] - 4.41 0.196 - 0.298 22.50 0.066
    Sika30-22[25] - 18.00 0.046 - 0.138 388.77 1.242
    Sika30-44[25] - 9.79 0.071 - 0.450 137.89 2.203
    Araldite2015-23[26] 18.40 18.40 0.126 0.336 0.447 146.03 6.044
    Araldite2015-42[26] 8.03 11.40 0.099 0.405 0.500 80.95 3.911
    Araldite2015-82[26] 2.64 4.08 0.111 0.218 0.224 23.78 0.360
    下载: 导出CSV

    表  8  CFRP板-钢板试件极限承载力的预测值与实验值比较

    Table  8.   Comparison between the predicted and tested ultimate of CFRP-steel specimens

    Specimen number${b_{\rm{p}}}$/mm${E_{\rm{p}}}$/GPa${t_{\rm{p}}}$/mm${G_{\rm{f}}}(T)$/(MPa·mm)${P_{\max ,{\rm{pre}}}}$/kN${P_{\max ,\exp }}$/kN${P_{\max ,{\rm{pre}}}}/{P_{\max ,\exp }}$
    GY34-T2.0-CT90-ST25 50 162.8 2.00 8.701 119.02 102.10 1.16
    CS-35-1[24] 20 180.5 1.46 1.899 20.01 16.20 1.24
    CS-65-1[24] 20 180.5 1.46 0.657 11.77 11.80 1.00
    Sika30-22-1[25] 50 165.0 1.20 1.242 35.07 54.00 0.65
    Sika30-44-1[25] 50 165.0 1.20 2.203 46.70 39.00 1.19
    Araldite2015-23-1[26] 25 185.0 1.44 6.500 45.87 53.40 0.86
    Araldite2015-42-2[26] 25 185.0 1.44 4.300 37.31 47.40 0.79
    Average 0.984
    Variance 0.043
    Notes: bp—Width of CFRP plate; Ep—Elastic modulus of CFRP plate; tp—Thickness of CFRP plate; Pmax,pre—Predicted value of bearing capacity; Pmax,exp—Experimental value of bearing capacity.
    下载: 导出CSV
  • [1] 李传习, 李游, 陈卓异, 等. 钢箱梁横隔板疲劳开裂原因及补强细节研究[J]. 中国公路学报, 2017, 30(3):122-131.

    LI Chuanxi, LI You, CHEN Zhuoyi, et al. Fatigue cracking reason and detail dimension of reinforcement about transverse diaphragm of steel box girder[J]. China Journal of Highway and Transport,2017,30(3):122-131(in Chinese).
    [2] 李游, 李传习, 陈卓异, 等. 基于监测数据的钢箱梁U肋细节疲劳可靠性分析[J]. 工程力学, 2020, 37(2):111-123.

    LI You, LI Chuanxi, CHEN Zhuoyi, et al. Fatigue reliability of U-rib detail of steel box girder based on monitoring data[J]. Engineering Mechanics,2020,37(2):111-123(in Chinese).
    [3] 李传习, 李游, 高有为, 等. 纳米SiO2质量分数对胶粘碳纤维增强树脂复合材料板-钢搭接界面黏结性能的影响[J]. 复合材料学报, 2020, 37(10):2619-2635.

    LI Chuanxi, LI You, GAO Youwei, et al. Effect of nano-SiO2 mass fraction on the interface performance of glued carbon fiber reinforced polymer composite-steel specimen[J]. Acta Materiae Compositae Sinica,2020,37(10):2619-2635(in Chinese).
    [4] ALAA Al-Mosawe, RIADH Al-Mahaidi. Performance of CFRP-steel joints enhanced with bi-directional CFRP fabric[J]. Construction and Building Materials,2019,197(10):72-82.
    [5] YU Qianqian, GAO Ruixin, GU Xianglin, et al. Bond behavior of CFRP-steel double-lap joints exposed to marine atmosphere and fatigue loading[J]. Engineering Structures,2018,175(8):76-85.
    [6] 李传习, 曹先慧, 柯璐, 等. 高温对结构加固用环氧黏结剂力学性能的影响[J]. 建筑材料学报, 2020, 23(3):642-649.

    LI Chuanxi, CAO Xianhui, KE Lu, et al. Effects of high temperatures on the mechanical properties of epoxy adhesives for structural strengthening[J]. Journal of Building Materials,2020,23(3):642-649(in Chinese).
    [7] TANG Hongyuan, DENG Xuezhi, LIN Zhibin, et al. Analytical and experimental investigation on bond behavior of CFRP-to-stainless steel interface[J]. Composite Structures,2019,212(1):94-105.
    [8] YANG Yongming, HUGO Biscaia, CARLOS Chastre, et al. Bond characteristics of CFRP-to-steel joints[J]. Journal of Constructional Steel Research,2017,138(8):401-419.
    [9] ZHOU Helezi, LIU Hongyuan, ZHOU Huamin, et al. On adhesive properties of nano-silica/epoxy bonded single-lap joints[J]. Materials and Design,2016,95(1):212-218.
    [10] CHANDRATHILAKA E R K, GAMAGE J C P H, FAWZIA S. Mechanical characterization of CFRP/steel bond cured and tested at elevated temperature[J]. Composite Structures,2019,407(9):471-477.
    [11] CHANDRATHILAKA E R K, GAMAGE J C P H, FAWZIA S. Numerical modelling of bond shear stress slip behavior of CFRP/steel composites cured and tested at elevated temperature[J]. Composite Structures,2019,212(1):1-10.
    [12] BERWIS D M, COMYN J, SHALASH R J A. The effect of moisture and temperature on the properties of an epoxide-polyamide adhesive in relation to its performance in single lap joints[J]. International Journal of Adhesion and Adhesives,1982,2(4):215-222. doi: 10.1016/0143-7496(82)90028-8
    [13] NGUYEN T C, BAI Y, ZHAO X L, et al. Mechanical characterization of steel/CFRP double strap joints at elevated temperatures[J]. Composite Structures,2011,93(6):1604-1612. doi: 10.1016/j.compstruct.2011.01.010
    [14] YAO M, ZHU D, YAO Y, et al. Experimental study on basalt FRP/steel single-lap joints under different loading rates and temperatures[J]. Composite Structures,2016,145(2):68-79.
    [15] SAHIN M U, DAWOOD M. Experimental investigation of bond between high-modulus CFRP and steel at moderately elevated temperatures[J]. Journal of Composites for Construction,2016,20(6):401-409.
    [16] CHATAIGNER S, BENZARTI K, FORET G, et al. Design and testing of an adhesively bonded CFRP strengthening system for steel structures[J]. Engineering Structures,2018,177(10):556-565.
    [17] 李传习, 李游, 贺君, 等. 室温胶粘CFRP板/钢板界面性能的固化剂影响[J]. 建筑材料学报, 2021, 24(2): 339-347.

    LI Chuanxi, LI You, HE Jun, et al. Effect of curing agent on interfacial performance of adhesively bonded CFRP/steel cured at room temperature[J]. Journal of Building Materials, 2021, 24(2): 339-347(in Chinese).
    [18] American Society for Testing and Materials. Standard test method for tensile properties for plastics: ASTM D638—10[S]. West Conshohocken: ASTM International, 2010.
    [19] American Society for Testing and Materials. Standard test method for strength properties of double lap shear adhesive joints by tension loading: ASTM D3528—96[S]. West Conshohocken: ASTM, 2008.
    [20] YU T, FERNANDO D, TENG J, et al. Experimental study on CFRP-to-steel bonded interfaces[J]. Composites Part B: Engineering,2012,43(5):2279-2289. doi: 10.1016/j.compositesb.2012.01.024
    [21] WANG H T, WU G. Bond-slip models for CFRP plates externally bonded to steel substrates[J]. Composite Structures,2018,184(10):1204-1214.
    [22] FIRMO J P, ROQUETTE M G, CORREIA J R, et al. Influence of elevated temperatures on epoxy adhesive used in CFRP strengthening systems for civil engineering applications[J]. International Journal of Adhesion and Adhesives,2019,93(1):8-18.
    [23] AL-SHAWAF A. Modelling wet lay-up CFRP-steel bond failures at extreme temperatures using stress-based approach[J]. International Journal of Adhesion & Adhesives,2011,31(6):416-428.
    [24] BISCAIA H C, RIBEIRO P. A temperature-dependent bond-slip model for CFRP-to-steel joints[J]. Composite Structures,2019,217(3):186-205.
    [25] ZHOU H, TORRES J P, FERNANDO D, et al. The bond behaviour of CFRP-to-steel bonded joints with varying bond properties at elevated temperatures[J]. Engineering Structures,2019,183(15):1121-1133.
    [26] 何俊. 胶粘剂性能对CFRP-钢界面粘结破坏行为的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    HE Jun. Research on the effects of adhesive properties on the failure behavior of CFRP-to-steel interface[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese).
    [27] LI You, LI Chuanxi, HE Jun, et al. Effect of functionalized nano-SiO2 addition on bond behavior of adhesively bonded CFRP-steel double-lap joint[J]. Construction and Building Materials,2020,244(5):1-17.
  • 加载中
图(21) / 表(8)
计量
  • 文章访问数:  1044
  • HTML全文浏览量:  359
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 录用日期:  2021-02-18
  • 网络出版日期:  2021-03-11
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回