留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水泥基材料离子热电效应与机制

崔一纬 王亚琼 魏亚

崔一纬, 王亚琼, 魏亚. 水泥基材料离子热电效应与机制[J]. 复合材料学报, 2022, 39(1): 302-312. doi: 10.13801/j.cnki.fhclxb.20210311.001
引用本文: 崔一纬, 王亚琼, 魏亚. 水泥基材料离子热电效应与机制[J]. 复合材料学报, 2022, 39(1): 302-312. doi: 10.13801/j.cnki.fhclxb.20210311.001
CUI Yiwei, WANG Yaqiong, WEI Ya. Ionic thermoelectric effect and mechanism of cement-based materials[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 302-312. doi: 10.13801/j.cnki.fhclxb.20210311.001
Citation: CUI Yiwei, WANG Yaqiong, WEI Ya. Ionic thermoelectric effect and mechanism of cement-based materials[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 302-312. doi: 10.13801/j.cnki.fhclxb.20210311.001

水泥基材料离子热电效应与机制

doi: 10.13801/j.cnki.fhclxb.20210311.001
基金项目: 国家重点研发计划(2018YFB1600200)
详细信息
    通讯作者:

    魏 亚,博士,副教授,博士生导师,研究方向为水泥基材料变形力学性能多尺度模拟表征、长寿命道路材料与结构、结构新材料研发  E-mail:yawei@tsinghua.edu.cn

  • 中图分类号: TB332

Ionic thermoelectric effect and mechanism of cement-based materials

  • 摘要: 当前水泥基材料热电效应主要通过掺入大量功能填料来增强。但掺量过高的功能填料提高了水泥基复合材料的成本,劣化了其力学性能,阻碍其大范围的应用。本研究发现,由于孔隙溶液中存在大量自由移动的离子,不掺任何功能填料的水泥净浆表现出显著的离子热电效应。本研究通过对比水泥净浆干燥前后的热电压,研究了水泥基材料的离子热电效应,并通过离子浸出与饱和碱溶液实验对水泥净浆的离子热电效应机制进行了探究。结果表明,由于孔隙溶液中OH的热扩散,干燥前水泥净浆表现出显著的n-type离子热电效应。离子浸出过程中OH浓度的降低导致水泥净浆的离子热电特性由n-type转变为p-type。饱和碱溶液后,在OH浓度较大时,阳离子种类亦会对离子热电特性产生显著影响。此外,未添加功能性填料的水泥净浆的Seebeck系数可达1.133 mV·℃−1,功率因数(PF)可达0.042 μW·m−1·℃−2,高于文献中一些功能性填料掺量达5%的水泥基复合材料,具有显著的热电转换效率。

     

  • 图  1  实验方法与装置((a)两电极法示意图;(b)Seebeck系数测量装置示意图)

    Figure  1.  Experimental method and test set up (a) Schematic diagram of two electrode method; (b) Schematic diagram of the set-up for Seebeck coefficient measurements)

    R—Direct current resistance; ΔT—Temperature difference; ΔV—Potential difference

    图  2  饱水后的水泥净浆电导率随离子浸出时间的变化

    Figure  2.  Electrical conductivity of saturated cement paste versus leaching time

    图  3  饱和NaOH后水泥净浆电导率与NaOH浓度的关系

    Figure  3.  Electrical conductivity of cement paste saturated with NaOH versus NaOH concentration

    图  4  干燥前水泥净浆热电压随温差的变化

    Figure  4.  Thermoelectric voltage of cement paste before drying versus temperature difference

    图  5  不同浸出时间水泥净浆热电压随温差的变化

    Figure  5.  Thermoelectric voltage of cement paste at different leaching time versus temperature difference

    图  6  饱和NaOH溶液后水泥净浆热电压随温差的变化

    Figure  6.  Thermoelectric voltage of cement paste saturated with NaOH solution versus temperature difference

    图  7  水泥净浆随离子浸出时间变化的峰值热电压

    Figure  7.  Maximum thermoelectric voltage of pure cement paste versus leaching time

    图  8  水泥净浆离子热电效应机制示意图((a)干燥前与离子浸出0 h;(b)离子浸出24 h后)

    Figure  8.  Mechanism of ionic thermoelectric effect of cement paste((a) Before drying and leaching for 0 h; (b) After leaching for 24 h)

    图  9  (a)浸出液pH值与OH浓度与浸出时间的关系; (b) 浸出液K+、Ca2+、Na+浓度与浸出时间的关系

    Figure  9.  (a) pH-value and OH concentration of leachant versus leaching time; (b) Concentration of K+, Ca2+, Na+ of leachant versus leaching time

    图  10  饱和NaOH后水泥净浆热电压峰值随NaOH浓度的变化

    Figure  10.  Variation of peak value of thermoelectric voltage of cement paste with NaOH concentration

    图  11  不同状态下水泥净浆Seebeck系数随温差的变化

    Figure  11.  Seebeck coefficient of cement paste versus temperature difference in different states

    图  12  水泥净浆随离子浸出时间变化的Seebeck系数 (S) 与功率因数(PF)的峰值

    Figure  12.  Maximum value of Seebeck coefficient (S ) and power factor (PF) of cement paste versus leaching time

    图  13  水泥基材料功率因数研究进展

    Figure  13.  Advances in power factor for cement composites

    EG—Expanded graphite; GNP—Graphene nanoplate; CNT—Carbon nanotube; CF—Carbon fiber; PC—Pure cement paste

    表  1  采用的普通硅酸盐水泥化学成分和物理性能

    Table  1.   Chemical compositions and physical properties of ordinary Portland cement

    SiO2/%Al2O3/%Fe2O3/%CaO/%MgO/%SO3/%Na2O/%Ignition loss/%Specific gravityBlaine fineness/(cm2·g−1)
    22.00 4.40 3.43 61.75 2.49 2.83 0.56 1.77 3.14 3500
    下载: 导出CSV

    表  2  试件饱和面干质量随真空饱水时间的变化

    Table  2.   Saturated surface dry mass versus vacuum saturation time

    ts/hm/gW/wt%
    0 73.715±0.438
    1 79.968±0.385 8.48%
    2 80.120±0.381 0.19%
    3 80.168±0.384 0.06%
    4 80.193±0.382 0.03%
    Notes: ts—Vacuum saturation time; m—Saturated surface dry mass; W—Mass variation.
    下载: 导出CSV
  • [1] TZOUNIS L, LIEBSCHER M, FUGE R, et al. P- and n-type thermoelectric cement composites with CVD grown p- and n-doped carbon nanotubes: Demonstration of a structural thermoelectric generator[J]. Energy and Buildings,2019,191:151-163. doi: 10.1016/j.enbuild.2019.03.027
    [2] WANG H, ZHAO D, KHAN Z U, et al. Ionic thermoelectric figure of merit for charging of supercapacitors[J]. Advanced Electronic Materials,2017,3(4):1700013. doi: 10.1002/aelm.201700013
    [3] MEMON S. Advanced thermoelectric materials for energy harvesting applications[M]. London: BoD–Books on Demand, 2019
    [4] HE X, CHENG H, YUE S, et al. Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties[J]. Journal of Materials Chemistry A,2020,8(21):10813-10821. doi: 10.1039/D0TA04100A
    [5] JANEK J, KORTE C. Study of the Soret effect in mixed conductors by the measurement of ionic and electronic thermopower[J]. Solid State Ionics,1996,92(3):193-204.
    [6] ZHAO D, WANG H, KHAN Z U, et al. Ionic thermoelectric supercapacitors[J]. Energy & Environmental Science,2016,9(4):1450-1457.
    [7] KYAW A K K, WONG G D H, YEMATA T A, et al. Effective ionic Seebeck component suppression in mixed ion-electron conductor via chemical treatment[J]. Organic Electronics,2019,69:7-12. doi: 10.1016/j.orgel.2019.02.014
    [8] HAN C G, QIAN X, LI Q, et al. Giant thermopower of ionic gelatin near room temperature[J]. Science, 2020, 368(6495): 1091-1098.
    [9] 崔一纬, 魏亚. 水泥基复合材料热电效应综述: 机制、材料、影响因素及应用[J]. 复合材料学报, 2020, 37(9):2077-2093.

    CUI Y W, WEI Y. A review of thermoelectric effect of cement-based composites: Mechanism, material, factor and application[J]. Acta Materiae Compositae Sinica,2020,37(9):2077-2093(in Chinese).
    [10] SUN M, LI Z, MAO Q, et al. Study on the hole conduction phenomenon in carbon fiber-reinforced concrete[J]. Cement and Concrete Research,1998,28(4):549-554. doi: 10.1016/S0008-8846(98)00011-8
    [11] WEI J, FAN Y, ZHAO L, et al. Thermoelectric properties of carbon nanotube reinforced cement-based composites fabricated by compression shear[J]. Ceramics International,2018,44(6):5829-5833. doi: 10.1016/j.ceramint.2018.01.074
    [12] WEI J, ZHAO L, ZHANG Q, et al. Enhanced thermoelectric properties of cement-based composites with expanded graphite for climate adaptation and large-scale energy harvesting[J]. Energy and Buildings,2018,159:66-74. doi: 10.1016/j.enbuild.2017.10.032
    [13] GHOSH S, HARISH S, ROCKY K A, et al. Graphene enhanced thermoelectric properties of cement based composites for building energy harvesting[J]. Energy and Buildings,2019,202:109419.
    [14] GHAHARI S, GHAFARI E, LU N. Effect of ZnO nanoparticles on thermoelectric properties of cement composite for waste heat harvesting[J]. Construction and Building Materials,2017,146:755-763. doi: 10.1016/j.conbuildmat.2017.04.165
    [15] JI T, ZHANG X, LI W. Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings[J]. Construction and Building Materials,2016,115:576-581. doi: 10.1016/j.conbuildmat.2016.04.035
    [16] JI T, ZHANG X, ZHANG X, et al. Effect of manganese dioxide nanorods on the thermoelectric properties of cement composites[J]. Journal of Materials in Civil Engineering,2018,30(9):04018224. doi: 10.1061/(ASCE)MT.1943-5533.0002401
    [17] 肖龙, 季涛, 廖晓, 等. 氧化镍水泥基复合材料热电性能研究[J]. 新型建筑材料, 2019, 46(3):32-35.

    XIAO Long, JI Tao, LIAO Xiao, et al. Thermoelectric property of cement composites with nickel oxide[J]. New Building Materials,2019,46(3):32-35(in Chinese).
    [18] GHOSH S, HARISH S, OHTAKI M, et al. Enhanced figure of merit of cement composites with graphene and ZnO nanoinclusions for efficient energy harvesting in buildings[J]. Energy,2020,198:117396.
    [19] JING G, YE Z, WU J, et al. Introducing reduced graphene oxide to enhance the thermal properties of cement composites[J]. Cement and Concrete Composites,2020,109:103559. doi: 10.1016/j.cemconcomp.2020.103559
    [20] LIN Y, DU H. Graphene reinforced cement composites: A review[J]. Construction and Building Materials,2020,265:120312. doi: 10.1016/j.conbuildmat.2020.120312
    [21] AGAR J N, MOU C Y, LIN J L. Single-ion heat of transport in electrolyte solutions: A hydrodynamic theory[J]. Journal of Physical Chemistry,2002,93(5):2079-2082.
    [22] VIGOLO D, BUZZACCARO S, PIAZZA R. Thermophoresis and thermoelectricity in surfactant solutions[J]. Langmuir,2010,26(11):7792-7801. doi: 10.1021/la904588s
    [23] LI T, ZHANG X, LACEY S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J]. Nature Materials,2019,18(6):608-613. doi: 10.1038/s41563-019-0315-6
    [24] WEI J, ZHANG Q, ZHAO L, et al. Effect of moisture on the thermoelectric properties in expanded graphite/carbon fiber cement composites[J]. Ceramics International,2017,43(14):10763-10769. doi: 10.1016/j.ceramint.2017.05.088
    [25] WEI J, ZHANG Q, ZHAO L, et al. Enhanced thermoelectric properties of carbon fiber reinforced cement composites[J]. Ceramics International,2016,42(10):11568-11573. doi: 10.1016/j.ceramint.2016.04.014
    [26] 钱锋, 刘宪昌. 石墨烯增强水泥基复合材料的制备及热电性能研究[J]. 功能材料, 2020, 51(10):10152-10156.

    QIAN Feng, LIU Xianchang. Preparation and thermoelectric properties of graphene-reinforced cement-based composites[J]. Journal of Functional Materials,2020,51(10):10152-10156(in Chinese).
    [27] ZHAO R H, TUAN C Y, XU A, et al. Conductivity of ionically-conductive mortar under repetitive electrical heating[J]. Construction and Building Materials,2018,173:730-739. doi: 10.1016/j.conbuildmat.2018.04.074
    [28] 范道波. 离子导电砂浆的研发及性能研究[D]. 广州: 广州大学, 2017.

    FAN Daobo. Invention of ionically conductive mortar and reseach on its performance[D]. Guangzhou: Guangzhou University, 2017(in Chinese).
    [29] 翁余斌. 基于离子导电的水泥基复合材料性能研究[D]. 广州: 广州大学, 2019.

    WENG Yubin. Study on properties of cement-based compo-sites based on ion conduction[D]. Guangzhou: Guangzhou University, 2019(in Chinese).
    [30] CAO J, CHUNG D D L. Role of moisture in the Seebeck effect in cement-based materials[J]. Cement and Concrete Research,2005,35(4):810-812. doi: 10.1016/j.cemconres.2004.05.036
    [31] GRETZ M, PLANK J. An ESEM investigation of latex film formation in cement pore solution[J]. Cement and Concrete Research,2011,41(2):184-190. doi: 10.1016/j.cemconres.2010.11.005
    [32] VOLLPRACHT A, LOTHENBACH B, SNELLINGS R, et al. The pore solution of blended cements: A review[J]. Materials & Structures, 2016, 49(8): 3341-3367.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  930
  • HTML全文浏览量:  327
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 修回日期:  2021-02-24
  • 录用日期:  2021-03-03
  • 网络出版日期:  2021-03-11
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回