留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

体积分数随机场作用下复合材料层合板固有振动特性不确定性分析

于汝雨 张旭方

于汝雨, 张旭方. 体积分数随机场作用下复合材料层合板固有振动特性不确定性分析[J]. 复合材料学报, 2022, 39(1): 412-423. doi: 10.13801/j.cnki.fhclxb.20210310.004
引用本文: 于汝雨, 张旭方. 体积分数随机场作用下复合材料层合板固有振动特性不确定性分析[J]. 复合材料学报, 2022, 39(1): 412-423. doi: 10.13801/j.cnki.fhclxb.20210310.004
YU Ruyu, ZHANG Xufang. Uncertainty analysis of natural vibration characteristics of composite laminated plates with spatially varied stochastic volume fractions[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 412-423. doi: 10.13801/j.cnki.fhclxb.20210310.004
Citation: YU Ruyu, ZHANG Xufang. Uncertainty analysis of natural vibration characteristics of composite laminated plates with spatially varied stochastic volume fractions[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 412-423. doi: 10.13801/j.cnki.fhclxb.20210310.004

体积分数随机场作用下复合材料层合板固有振动特性不确定性分析

doi: 10.13801/j.cnki.fhclxb.20210310.004
基金项目: 国家自然科学基金(51775095);中央高校基本科研业务费项目(N2003029)
详细信息
    通讯作者:

    张旭方,博士,特聘研究员,博士生导师,研究方向为工程结构可靠性设计方法 E-mail:zhangxf@mail.neu.edu.cn

  • 中图分类号: TB333

Uncertainty analysis of natural vibration characteristics of composite laminated plates with spatially varied stochastic volume fractions

  • 摘要: 考虑复合材料层合板中每层体积分数空间不确定性的影响,采用指数型自相关函数模拟每层体积分数同空间位置的依赖关系,结合伽辽金-里兹正交多项式逼近和K-L展开方法,研究了体积分数随机场的自相关长度特征对材料属性随机场离散精度的影响;进而通过体积分数随机场作用下复合材料层合板的随机有限元模型,研究了T300碳纤维/QY8911环氧树脂复合材料垂尾蒙皮结构的固有频率均值、标准差和变异系数与层合板层数之间的关系,基于Monte-Carlo模拟方法验证了采用本文方法开展复合材料层合板固有振动特性分析的有效性。数值结果表明:复合材料层合板结构固有频率的变异系数随铺层数减少而增大,层数越少,纤维体积分数的不确定性对固有振动特性分散性的影响越大。

     

  • 图  1  T300碳纤维/QY8911环氧树脂复合材料层合板垂尾蒙皮结构示意图

    Figure  1.  Schematic diagram of vertical tail structure of T300 carbon fiber/QY8911 epoxy composite laminate

    图  2  T300碳纤维/QY8911环氧树脂复合材料垂尾蒙皮结构随机场模拟的离散网格

    Figure  2.  Discrete mesh of random field of vertical tail structure of T300 carbon fiber/QY8911 epoxy composite laminate

    图  3  T300/QY8911复合材料层合板不同角度铺层的体积分数随机场标准差相对误差

    Figure  3.  Relative error of standard deviation for random field of different layer angles of T300/QY8911 composite laminates

    δy—Correlation length perpendicular to fiber direction; δx—Correlation length along fiber direction

    图  4  T300/QY8911复合材料层合板不同角度铺层体积分数随机场的两个实现结果

    Figure  4.  Two realizations of the volume fraction random field of different layer angles of T300/QY8911 composite laminates

    图  5  不同角度铺层体积分数随机场模拟结果的均值(a)和标准差(b)

    Figure  5.  Results for mean-value (a) and standard deviation (b) of random field realizations of various layer angles of T300/QY8911 composite laminates

    图  6  不同角度铺层体积分数随机场模拟结果的均值相对误差(a)和标准差相对误差(b)

    Figure  6.  Relative errors for mean-value (a) and relative errors for standard deviation (b) of random field realizations of various layer angles of T300/QY8911 composite laminates

    图  7  T300碳纤维/QY8911环氧树脂复合材料层合板垂尾蒙皮结构前6阶固有频率概率密度函数

    Figure  7.  Probability density function (PDF) of the first 6-order natural frequency of the T300 carbon fiber/QY8911 epoxy composite laminate vertical tail skin structure

    图  8  T300碳纤维/QY8911环氧树脂复合材料层合板垂尾蒙皮结构前6阶振型逐点均值(a)和标准差(b)

    Figure  8.  Mean value (a) and standard deviation (b) for the first-six modes of the T300 carbon fiber/QY8911 epoxy composite laminate vertical tail skin structure

    图  9  T300碳纤维/QY8911环氧树脂复合材料层合板垂尾蒙皮结构基于5000次模拟的前6阶固有频率均值(a)、标准差(b)和变异系数(c)

    Figure  9.  Mean value (a), standard deviation (S.D. )(b) and coefficient of variation (COV) (c) for the first-six natural frequencies of the T300 carbon fiber/QY8911 epoxy composite laminate vertical tail skin structure based on 5000 simulations

    图  10  T300碳纤维/QY8911环氧树脂复合材料层合板垂尾蒙皮结构两种铺层方案的前6阶固有频率变异系数:(a)方案1:45°和−45°交替铺层;(b)方案2:0°和90°交替铺层

    Figure  10.  Coefficient of variation (COV) of the first 6-order natural frequencies of the T300 carbon fiber/QY8911 epoxy composite laminate vertical tail skin structure with two laying schemes: (a) Scheme 1: 45° and −45° alternate laying; (b) Scheme 2: 0° and 90° alternate laying

    表  1  T300碳纤维/QY8911环氧树脂复合材料层合板的材料属性

    Table  1.   Material properties of T300 carbon fiber/QY8911 epoxy composite laminates

    Ef1/GPaEf2/GPaGf12/GPaGf23/GPaν12Em/GPaGm/GPaνmρ/(kg·m−3)
    22113.894.80.253.62.340.31578
    Notes:Ef1, Ef2—Fiber longitudinal and transverse elasticity moduli; Gf12, Gf23—Fiber longitudinal and transverse shear moduli; ν12—Longitudinal Poisson’s ratio of fiber; Em, Gm—Elasticity modulus and shear modulus of matrix; νm—Poisson's ratio of matrix; ρ—Equivalent density of composites.
    下载: 导出CSV
  • [1] JU F, LEE H P, LEE K H. Free vibration of composite plates with delaminations around cutouts[J]. Composite Structures,1995,31(2):177-183. doi: 10.1016/0263-8223(95)00016-X
    [2] WANG S. Free vibration analysis of skew fibre-reinforced composite laminates based on first-order shear deformation plate theory[J]. Computers & Structures,1997,63(3):525-538.
    [3] HU N, FUKUNAGA H, KAMEYAMA M, et al. Vibration analysis of delaminated composite beams and plates using a higher-order finite element[J]. International Journal of Mechanical Sciences,2002,44(7):1479-1503. doi: 10.1016/S0020-7403(02)00026-7
    [4] NAYYAR K. Static and modal analyses of laminated composite plates using hierarchical finite element method[D]. Montreal: Concordia University, 2006.
    [5] 吉桂秀. 含多分层复合材料层合板和加筋板的自由振动特性研究[D]. 大连: 大连理工大学, 2006.

    JI Guixu. Study on free vibration characteristics for composite laminates and stiffened plates with multiple delaminations[D]. Dalian: Dalian University of Technology, 2006 (in Chinese).
    [6] 高希光, 宋迎东, 孙志刚. 纤维位置随机引起的复合材料性能分散性研究[J]. 航空动力学报, 2005, 20(4):584-589.

    GAO Xiguang, SONG Yingdong, SUN Zhigang. Research on the discrepancy of composite effective properties induced dy the stochastic fiber location[J]. Journal of Aerospace Power,2005,20(4):584-589(in Chinese).
    [7] 高希光, 宋迎东, 孙志刚. 纤维尺寸随机引起的复合材料性能分散性研究[J]. 材料科学与工程学报, 2005, 23(3):335-340.

    GAO Xiguang, SONG Yingdong, SUN Zhigang. Research on variation of effective performance of composites induces by the stochastic fiber size[J]. Journal of Materials Science & Engineering,2005,23(3):335-340(in Chinese).
    [8] 俸翔, 卢子兴. 基于随机场的复合材料单层板模量分散性研究[J]. 机械强度, 2010, 32(4):622-626.

    FENG Xiang, LU Zixing. Studies on the modules discrepancy of single-layer composite plate based on random field theory[J]. Jouranl of Mechanical Strength,2010,32(4):622-626(in Chinese).
    [9] 山美娟, 赵丽滨. CFRP复合材料螺栓连接失效载荷不确定性的评估方法[J]. 复合材料学报, 2021, 38(5):1468-1475.

    SHAN Meijuan, ZHAO Libin. An evaluation method for the uncertainty in failure load of CFRP composite bolted joints[J]. Acta Materiae Compositae Sinica,2021,38(5):1468-1475(in Chinese).
    [10] VANMARCKE E, SHINOZUKA M, NAKAGIRI S, et al. Random fields and stochastic finite elements[J]. Structural Safety,1986,3(3-4):143-166. doi: 10.1016/0167-4730(86)90002-0
    [11] VANMARCKE E, GRIGORIU M. Stochastic finite element analysis of simple beams[J]. Journal of Engineering Mechanics,1983,109(5):1203-1214. doi: 10.1061/(ASCE)0733-9399(1983)109:5(1203)
    [12] VANMARCKE E. Random fields: Analysis and synthesis[M]. Hackensack: World Scientific, 2010: 13-41.
    [13] KIUREGHIAN A D, KE J B. The stochastic finite element method in structural reliability[J]. Probabil Engineering Mechanics,1988,3(2):83-91. doi: 10.1016/0266-8920(88)90019-7
    [14] TAKADA T, SHINOZUKA M. Local integration method in stochastic finite element analysis[C]. New York: Structural Safety & Reliability, 2015.
    [15] LIU W K, BELYTSCHKO T, MANI A. Random field finite elements[J]. International Journal for Numerical Methods in Engineering,2010,23(10):1831-1845.
    [16] ATKINSON, KENDALL E. The numerical solution of integral equations of the second kind: Iteration method[J]. Numerische Mathematik,1997,19(3):248-259.
    [17] HUANG S P, QUEK S T, PHOON K K. Convergence study of the truncated Karhunen-Loeve expansion for simulation of stochastic processes[J]. International Journal for Numerical Methods in Engineering,2001,52(9):1029-1043. doi: 10.1002/nme.255
    [18] ZHANG X, LIU Q, HUANG H. Numerical simulation of random fields with a high-order polynomial based Ritz-Galerkin approach[J]. Probabil Engineering Mechanics,2019,55:17-27.
    [19] SASIKUMAR P, SURESH R, VIJAYAGHOSH P K, et al. Experimental characterisation of random field models for CFRP composite panels[J]. Composite Structures,2015,120:451-471. doi: 10.1016/j.compstruct.2014.10.023
    [20] YUN G J, ZHAO L, IARVE E. Probabilistic mesh-independent discrete damage analyses of laminate composites[J]. Composite Structures,2015,133:22-30.
    [21] 俸翔, 马元春, 卢子兴. 复合材料夹层板屈曲强度的分散性分析[J]. 复合材料学报, 2011, 28(1):132-137.

    FENG Xiang, MA Yuanchun, LU Zixing. Critical buckling load discrepancy of composite laminates[J]. Acta Materiae Compositae Sinica,2011,28(1):132-137(in Chinese).
    [22] 胥小强. 纤维增强复合材料层合板振动响应分析与优化[D]. 南京: 南京航空航天大学, 2015.

    XU Xiaoqiang. Analysis and optimization of the vibration response for fiber reinforced composites with laminated structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese).
    [23] 臧晓蕾, 殷奇, 梁海啸. 碳纤维复合材料地铁车顶板固有频率概率分析[J]. 复合材料科学与工程, 2020(8):18-24.

    ZANG Xiaolei, YIN Qi, LIANG Haixiao. Probabilistic free vibration analysis of carbon fiber reinforced composite metro roof panels[J]. Composites Science and Engineering,2020(8):18-24(in Chinese).
    [24] 陈烈民, 杨宝宁. 复合材料的力学分析[M]. 北京: 中国科学技术出版社, 2006: 88-98.

    CHEN Liemin, YANG Baoning. Mechanical analysis of composites[M]. Beijing: China Science and Technology Press, 2006: 88-98 (in Chinese).
    [25] 张秉杰, 臧朝平, PETROV E P. 基于高保真有限元模型失谐叶盘受迫响应的统计特性[J]. 航空动力学报, 2019, 34(1):135-141.

    ZHANG Bingjie, ZANG Chaoping, PETROV E P. Statistical characteristics of forced response in mistuned bladed disks based on high-fidelity finite element model[J]. Journal of Aerospace Power,2019,34(1):135-141(in Chinese).
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  152
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 修回日期:  2021-02-17
  • 录用日期:  2021-02-25
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回