留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电熔MgAl2O4对Al2O3-MgAl2O4复合耐火材料高温蠕变性能的影响

李人骏 张玲 郑培毓

李人骏, 张玲, 郑培毓. 电熔MgAl2O4对Al2O3-MgAl2O4复合耐火材料高温蠕变性能的影响[J]. 复合材料学报, 2022, 39(1): 285-291. doi: 10.13801/j.cnki.fhclxb.20210310.003
引用本文: 李人骏, 张玲, 郑培毓. 电熔MgAl2O4对Al2O3-MgAl2O4复合耐火材料高温蠕变性能的影响[J]. 复合材料学报, 2022, 39(1): 285-291. doi: 10.13801/j.cnki.fhclxb.20210310.003
LI Renjun, ZHANG Ling, ZHENG Peiyu. Effect of fused MgAl2O4 on high temperature creep properties of Al2O3-MgAl2O4 refractory[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 285-291. doi: 10.13801/j.cnki.fhclxb.20210310.003
Citation: LI Renjun, ZHANG Ling, ZHENG Peiyu. Effect of fused MgAl2O4 on high temperature creep properties of Al2O3-MgAl2O4 refractory[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 285-291. doi: 10.13801/j.cnki.fhclxb.20210310.003

电熔MgAl2O4对Al2O3-MgAl2O4复合耐火材料高温蠕变性能的影响

doi: 10.13801/j.cnki.fhclxb.20210310.003
基金项目: 国家自然基金联合基金项目(U20A20239)
详细信息
    通讯作者:

    张玲,博士,教授,研究方向为耐火材料 E-mail:452433876@qq.com

  • 中图分类号: TQ175

Effect of fused MgAl2O4 on high temperature creep properties of Al2O3-MgAl2O4 refractory

  • 摘要: 以烧结板状刚玉和电熔镁铝尖晶石为原料、磷酸为结合剂,在1680℃下制备了刚玉-镁铝尖晶石复合耐火材料样品。在1500℃、0. 2 MPa的条件下保温50 h测试试样高温蠕变性能,采用 XRD、SEM和EDS分析蠕变前后试样的物相组成及显微结构,分析镁铝尖晶石添加量对刚玉-镁铝尖晶石复合耐火材料高温蠕变性能的影响。结果表明:刚玉-镁铝尖晶石复相材料较纯刚玉材料有着更好的抗蠕变性。镁铝尖晶石骨料在蠕变过程中会与氧化铝基质之间发生固溶反应而在尖晶石颗粒周围形成二次尖晶石层,有效连接了基质与骨料,提高了试样的抗蠕变性。在二次尖晶石层形成的过程中由于Mg2+有着更高的迁移速率和在反应界面两侧较高的厚度比,会诱发柯肯达尔效应,导致界面处空位大量积累和孔隙的产生。

     

  • 图  1  蠕变实验前后Al2O3-MgAl2O4复合耐火材料样品的XRD图谱

    Figure  1.  XRD patterns of Al2O3-MgAl2O4 refractory samples before and after creep test

    X—0wt%, 8wt%, 12wt%, 20wt%

    图  2  图1中镁铝尖晶石物相特征峰(311)的XRD图谱

    Figure  2.  XRD pattern of phase characteristic peak (311) of spinel in Fig. 1

    图  3  Al2O3-MgAl2O4复合耐火材料1500℃保温50 h蠕变曲线

    Figure  3.  Creep rate curves of Al2O3-MgAl2O4 refractory at 1500℃ for 50 h

    图  4  Al2O3-MgAl2O4复合耐火材料1500℃保温0~25 h的蠕变拟合曲线

    Figure  4.  Creep fitting curves of Al2O3-MgAl2O4 refractory at 1500℃ for 0-25 h

    图  5  Al2O3-MgAl2O4复合耐火材料1500℃保温25~50 h的蠕变拟合曲线

    Figure  5.  Creep fitting curves of Al2O3-MgAl2O4 refractory at 1500℃ for 25-50 h

    图  6  Al2O3-8wt%MgAl2O4、Al2O3-12wt%MgAl2O4和Al2O3-20wt%MgAl2O4试样蠕变实验前后的SEM图像

    Figure  6.  SEM images of Al2O3-8wt%MgAl2O4 Al2O3-12wt%MgAl2O4 and Al2O3-20wt%MgAl2O4 specimens before and after creep test

    图  7  蠕变实验后试样Al2O3-12wt%MgAl2O4和Al2O3-20wt%MgAl2O4中层带状结构SEM图像

    Figure  7.  SEM images of layer banded structure in specimens Al2O3-12wt%MgAl2O4 and Al2O3-20wt%MgAl2O4 after creep test

    图  8  镁铝尖晶石和刚玉形成镁铝尖晶石固溶体的示意图[19]

    Figure  8.  Diagram of magnesia-aluminum spinel and corundum forming a magnesia-aluminum spinel solid solution[19]

    图  9  镁铝尖晶石与刚玉之间形成层带状结构的二次尖晶石层示意图

    Figure  9.  Diagram of secondary spinel layer with a band-like structure formed between magnesium aluminum spinel and corundum

    表  1  原料化学组成

    Table  1.   Chemical composition of raw materials wt%

    Al2O3MgOSiO2Fe2O3Na2O
    Tabular corundum 99.55 0.04 0.03 0.3
    Fused MA 71.4 27.8 0.19 0.33 0.28
    Note: MA—Magnesia alumina spinel.
    下载: 导出CSV

    表  2  Al2O3-MgAl2O4复合耐火材料样品配比

    Table  2.   Proportion of Al2O3-MgAl2O4 refractory samples

    Raw material/wt%Grain size/mmAl2O3Al2O3-8wt%MgAl2O4Al2O3-12wt%MgAl2O4Al2O3-20wt%MgAl2O4
    Tabular corundum 5-3 7 7 7 7
    Tabular corundum 3-1 38 30 26 18
    Fused MA 3-1 0 8 12 20
    Tabular corundum 1-0 22 22 22 22
    Tabular corundum <0.088 33 33 33 33
    下载: 导出CSV

    表  3  Al2O3-MgAl2O4复合耐火材料样品的物理性能指标

    Table  3.   Physical properties of Al2O3-MgAl2O4 refractory samples

    SampleApparent porosity/%Bulk density/(g·cm–3)Cold crushing/strength/MPa
    Al2O3 14.5 3.23 73
    Al2O3-8wt%MgAl2O4 17.3 3.13 62
    Al2O3-12wt%MgAl2O4 16.5 2.96 58
    Al2O3-20wt%MgAl2O4 16.1 3.02 66
    下载: 导出CSV

    表  4  Al2O3-MgAl2O4复合耐火材料1500℃保温50 h蠕变曲线拟合方程

    Table  4.   Fitting equation of creep curve of Al2O3-MgAl2O4 refractory at 1500℃ for 50 h

    Time/hSampleEquationR2
    0-25 Al2O3 Y=0.517exp(−t/2.012)+1.488exp(−t/24.646)−2 0.999
    Al2O3-8wt%MgAl2O4 Y=0.192exp(−t/1.569)+0.618exp(−t/22.462)−0.81 0.999
    Al2O3-12wt%MgAl2O4 Y=0.137exp(−t/0.113)+0.23exp(−t/8.088)−0.367 0.999
    Al2O3-20wt%MgAl2O4 Y=0.235exp(−t/2.22)+0.618exp(−t/239.243)−1.57 0.999
    25-30 Al2O3 Y=−0.017t−1.056 0.994
    Al2O3-8wt%MgAl2O4 Y=−0.009t−0.373 0.994
    Al2O3-12wt%MgAl2O4 Y=−0.0007t−0.34 0.879
    Al2O3-20wt%MgAl2O4 Y=−0.002t−0.33 0.824
    Notes: Y—Creep rate; t—Time.
    下载: 导出CSV

    表  5  图7中所选微区的EDS结果

    Table  5.   EDS results of areas marked in Fig. 7

    SpecimenMarked areaAtom fraction/at%
    MgAlO
    Al2O3-12wt%MgAl2O4 1 10.25 31.8 57.95
    2 9.31 32.55 58.14
    3 9.19 32.65 58.16
    4 8.76 33.00 58.25
    5 5.01 35.99 59.00
    6 40 60
    Al2O3-20wt%MgAl2O4 7 9.61 32.31 58.08
    8 9.47 32.43 58.11
    9 9.61 32.31 58.08
    10 5.29 35.77 58.94
    11 40 60
    下载: 导出CSV
  • [1] 王恩会, 陈俊红, 侯新梅. 钢包工作衬用耐火材料的研究现状及最新进展[J]. 工程科学学报, 2019, 41(6):695-708.

    WANG Enhui, CHEN Junhong, HOU Xinmei. Current research and latest developments on refractories used as ladle linings[J]. Chinese Journal of Engineering,2019,41(6):695-708(in Chinese).
    [2] MARTINEZ A G, LUZ A P, PANDOLFELLI V C et al. Revisiting CA6 formation in cement-bonded alumina-spinel refractory castables[J]. Journal of the European Ceramic Society,2017,37(15):5023-5034. doi: 10.1016/j.jeurceramsoc.2017.07.003
    [3] LONG B, XU G, BUHR A, et al. Fracture behaviour and microstructureof refractory materials for steel ladle purging plugs in the system Al2O3-MgO-CaO[J]. Ceramics International,2017,43(13):9679-9685. doi: 10.1016/j.ceramint.2017.04.141
    [4] KO Y C. Role of spinel composition in the slag resistance of Al2O3-spinel and Al2O3-MgO cast-ables[J]. Ceramics International,2002,28(7):805-810. doi: 10.1016/S0272-8842(02)00046-9
    [5] ZHANG P X, CHEN A B, GAO S, et al. Trace nanoscale Al2O3 in Al2O3-MgAl2O4 castable for improved thermal shock performance[J]. Ceramics International,2019,45(17):23029-23036. doi: 10.1016/j.ceramint.2019.07.350
    [6] GANESH I, BHATTACHARJEE S, MAHAJAN Y R. An efficient MgAl2O4 spinel additive for improved slag erosion and penetration resistance of high-Al2O3 and MgO–C refractories[J]. Ceramics International,2002,28(3):245-253. doi: 10.1016/S0272-8842(01)00086-4
    [7] JIN S, HARMUTH H, GRUBER D. Compressive creep testing of refractories at elevated loads—Device, material law and evaluation techniques[J]. Journal of the European Ceramic Society,2014,34(15):4037-4042. doi: 10.1016/j.jeurceramsoc.2014.05.034
    [8] 张秀华, 李勇, 田志宏, 等. 压蠕变实验方法对硅砖蠕变结果的适应性探究[J]. 硅酸盐学报, 2020, 48(9):1505-1510.

    ZHANG Xiuhua, LI Yong, TIAN Zhihong, et al. Evaluation of creep results of silica brick by creep test method[J]. Journal of the Chinese Ceramic Society,2020,48(9):1505-1510(in Chinese).
    [9] DÍAZ L A, TORRECILLAS R. Hot bending strength and creep behaviour at 1000-1400℃ of high alumina refractory castables with spinel, periclase and dolomite additions[J]. Journal of the European Ceramic Society,2009,29(1):53-58. doi: 10.1016/j.jeurceramsoc.2008.05.044
    [10] SAMADI S, JIN S S L, GRUBER D, et al. Creep parameter determination of a shaped alumina spinel refractory using statistical analysis[C]//Dannert C. Refractories Enabling High Temperature Technologies. Aachen: ECREF European Centre for Refractories Gemeinnützige GmbH, 2020: 89-93.
    [11] 国家标准化管理委员会. 致密定形耐火制品体积密度、显气孔率和真气孔率试验方法: GB/T 2997—2000[S]. 北京: 中国标准出版社, 2001.

    Standardization Administration of the People’s Republic of China. Test method for bulk density, apparent porosity and true porosity of dense shaped refractory products: GB/T 2997—2000[S]. Beijing: Standards Press of China, 2001(in Chinese).
    [12] 国家标准化管理委员会. 耐火材料常温耐压强度试验方法: GB/T 5072—2008[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Refractories-Determination of cold compressive strength: GB/T 5072—2008[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [13] 国家标准化管理委员会. 耐火材料压蠕变试验方法: GB/T 5073—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Refractory products-Test method of creep in compression: GB/T 5073—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [14] KO Y C, LAY J T. Thermal expansion characteristics of alumina-magnesia and alumina-spinel castables in the temperature range 800-1 650℃[J]. Journal of the American Ceramic Society,2000,83(11):2872-2874.
    [15] 戴亚洁, 李亚伟, 金胜利. 耐火材料力学行为表征方法研究进展[J]. 硅酸盐学报, 2019, 47(8):1089-1094.

    DAI Yajie, LI Yawei JIN Shengli. Review on characterization methods for mechanical behavior of refractory materials[J]. Journal of the Chinese Ceramic Society,2019,47(8):1089-1094(in Chinese).
    [16] TONG Shanghao, LI Yong, ZHAO Jizeng, et al. Effect of Al addition on creep resistance of MgO-Al2O3 composite for sliding plate at 1400℃[J]. Ceramics International,2017,43(15):11610-11615. doi: 10.1016/j.ceramint.2017.05.330
    [17] IBRAM G. A review on magnesium aluminate (MgAl2O4) spinel: Synthesis, processing and applications[J]. International Materials Reviews,2013,58(2):63-112. doi: 10.1179/1743280412Y.0000000001
    [18] 仝尚好, 李勇, 焦智宇, 等. MgO 与 Al2O3对Al–MgO–Al2O3体系中 MgAlON 形成机理的影响[J]. 硅酸盐学报, 2019, 47(12):1746-1751.

    TONG Shanghao, LI Yong, JIAO Zhiyu, et al. Effect of MgO and Al2O3 on formation of MgAlON in Al–MgO–Al2O3 composites[J]. Journal of the Chinese Ceramic Society,2019,47(12):1746-1751(in Chinese).
    [19] 李楠, 顾华志, 赵惠忠. 耐火材料学[M]. 北京: 冶金工业出版社, 2012: 195.

    LI Nan, GU Huazhi, ZHAO Huizhong. Refractories[M]. Beijing: Metallurgical Industry Press, 2012: 195(in Chinese).
    [20] SAKO E Y, PANDOLFELLI V C, ZINNGREBE E, et al. Fundamentals and applications on in situ spinel formation mechanisms in Al2O3-MgO refractory castables[J]. Ceramics International,2012,38(3):2243-2251. doi: 10.1016/j.ceramint.2011.10.074
    [21] RIGAUD M, BUHR A, PARR C, et al. Spinel-containing alumina-based refractory castables[J]. Ceramics International,2011,37(6):1705-1724. doi: 10.1016/j.ceramint.2011.03.049
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  762
  • HTML全文浏览量:  291
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 修回日期:  2021-02-09
  • 录用日期:  2021-02-21
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回