留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

经纬向纤维体积分数对耐碱玻璃纤维织物增强混凝土拉伸力学性能的影响

朱德举 李新亮 李安令

朱德举, 李新亮, 李安令. 经纬向纤维体积分数对耐碱玻璃纤维织物增强混凝土拉伸力学性能的影响[J]. 复合材料学报, 2022, 39(1): 322-334. doi: 10.13801/j.cnki.fhclxb.20210306.002
引用本文: 朱德举, 李新亮, 李安令. 经纬向纤维体积分数对耐碱玻璃纤维织物增强混凝土拉伸力学性能的影响[J]. 复合材料学报, 2022, 39(1): 322-334. doi: 10.13801/j.cnki.fhclxb.20210306.002
ZHU Deju, LI Xinliang, LI Anling. Influence of warp and weft fiber volume fractions on tensile mechanical properties of alkali-resistant glass textile reinforced concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 322-334. doi: 10.13801/j.cnki.fhclxb.20210306.002
Citation: ZHU Deju, LI Xinliang, LI Anling. Influence of warp and weft fiber volume fractions on tensile mechanical properties of alkali-resistant glass textile reinforced concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 322-334. doi: 10.13801/j.cnki.fhclxb.20210306.002

经纬向纤维体积分数对耐碱玻璃纤维织物增强混凝土拉伸力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20210306.002
基金项目: 国家自然科学基金(51778220;U1806225);湖湘高层次人才聚集工程-创新人才(2018RS3057);湖南省高新技术产业科技创新引领计划项目(2020GK2079);湖南省研究生科研创新项目(CX2016B109)
详细信息
    通讯作者:

    朱德举,博士,教授,博士生导师,研究方向为生物材料多尺度力学行为及仿生、高性能纤维/织物增强水泥基和树脂基复合材料、防弹高性能纤维布的力学特性和有限元分析、冲击和高应变率试验技术 E-mail:dzhu@hnu.edu.cn

  • 中图分类号: TB332;TU599

Influence of warp and weft fiber volume fractions on tensile mechanical properties of alkali-resistant glass textile reinforced concrete

  • 摘要: 为了研究经纬向纤维体积分数对耐碱玻璃纤维织物增强混凝土(ARG-TRC)拉伸力学性能的影响,通过万能试验机对不同经向纤维体积分数(0.24vol%、0.49vol%、0.73vol%和1.09vol%)和纬向纤维体积分数(0vol%、0.20vol%、0.48vol%和0.96vol%)的试件进行准静态拉伸试验,并结合数字图像相关分析得到拉伸状态下裂纹与应变分布。结果表明:ARG-TRC的拉伸力学性能和破坏形态主要取决于经向纤维体积分数,而纬向纤维体积分数对其影响不大;随着经向纤维体积分数的增加,极限强度、峰值应变和韧性明显增大,裂纹条数明显增加。对拉伸应力-应变曲线化进行三线性拟合,得到简化模型并与ACK模型进行对比。基于现有的裂纹间距计算模型和试验数据,修正了裂纹间距计算公式,其结果与文献数据吻合较好。该成果将有助于织物增强混凝土(TRC)中纤维织物的优化配置,提高纤维织物的利用率,对TRC的性能设计具有指导意义。

     

  • 图  1  耐碱玻璃纤维织物、处理后的纤维织物、浇筑模板和拉伸装置

    Figure  1.  Alkali-resistant glass textile, prepared textile, casting mold and tensile test setup

    图  2  ARG-TRC典型破坏形态

    Figure  2.  Typical failure modes of ARG-TRC

    图  3  不同纬向纤维体积分数的ARG-TRC拉伸应力-应变曲线

    Figure  3.  Tensile stress-strain curves of ARG-TRC with various volume fractions of weft fiber

    图  4  不同经向纤维体积分数的ARG-TRC拉伸应力-应变曲线

    Figure  4.  Tensile stress-strain curves of ARG-TRC with various volume fractions of warp fiber

    图  5  ARG-TRC典型拉伸应力-应变曲线

    Figure  5.  Typical tensile stress-strain curves of ARG-TRC

    图  6  纬向纤维体积分数对ARG-TRC力学性能的影响

    Figure  6.  Influences of weft fiber volume fractions on mechanical properties of ARG-TRC

    图  7  经向纤维体积分数对ARG-TRC力学性能的影响

    Figure  7.  Influences of warp fiber volume fractions on mechanical properties of ARG-TRC

    图  8  不同纤维体积分数的ARG-TRC拉伸本构模型:(a) 纬向;(b) 经向

    Figure  8.  Tensile constitutive models of ARG-TRC with various fiber volume fractions: (a) Weft; (b) Warp

    图  9  不同经纬向纤维体积分数的ARG-TRC裂纹和应变分布

    Figure  9.  Crack and strain distribution of ARG-TRC with various volume fractions of weft and warp fibers

    图  10  不同纬向纤维体积分数ARG-TRC的裂纹数量(a)和平均裂纹间距(b)

    Figure  10.  Crack number (a) and average crack spacing (b) of ARG-TRC with various volume fractions of weft fibers

    图  11  不同经向纤维体积分数ARG-TRC的裂纹数量(a)和平均裂纹间距(b)

    Figure  11.  Crack number (a) and average crack spacing (b) of ARG-TRC with various volume fractions of warp fibers

    图  12  ARG-TRC平均裂纹间距模型结果和试验结果对比

    Figure  12.  Comparison of the average crack spacing of ARG-TRC by models and experiments

    表  1  基体配合比设计

    Table  1.   Mix design of the matrix kg/m3

    CementFly ashSilica fumeWaterSand (0-0.6 mm)Sand (0.6-1.2 mm)SuperplasticizerDefoamerThickener
    472 168 35 262 250 500 1.9 2.8 0.2
    下载: 导出CSV

    表  2  耐碱玻璃纤维网格布性能参数

    Table  2.   Performance parameters of alkali-resistant glass textile

    TypeGrammage/(g·mm−2)CoatingCross section area of single yarn/mm2Ultimate strength of single yarn/MPa
    WarpWeftWarpWeft
    ARNP300 250 Butyl benzene latex 0.24 0.25 987.5 820
    下载: 导出CSV

    表  3  耐碱玻璃纤维织物增强混凝土(ARG-TRC)试件编号和对应的纤维体积分数

    Table  3.   Specimen ID and corresponding fiber volume fractions of alkali-resistant glass textile reinforced concrete (ARG-TRC)

    Specimen IDAmount of warp yarnAmount of weft yarn${V_{\rm{f}}}$ of warp yarn/vol%${V_{\rm{f}}}$ of weft yarn/vol%
    J5W0 5 0 1.09 0.00
    J5W3 5 3 1.09 0.20
    J5W7 5 7 1.09 0.48
    J1W14 1 14 0.24 0.96
    J2W14 2 14 0.49 0.96
    J3W14 3 14 0.73 0.96
    J5W14 5 14 1.09 0.96
    Notes:J1, J2, J3 and J5 represent that there are 1, 2, 3 and 5 warp yarns in each layer of textile;W0, W3, W7 and W14 represent that there are 0, 3, 7 and 14 weft yarns in each layer of textile;${V_{\rm{f}}}$—Volume fraction.
    下载: 导出CSV

    表  4  不同经纬向纤维体积分数的ARG-TRC的性能参数

    Table  4.   Properties parameters of ARG-TRC with various volume fractions of warp and weft fibers

    Specimen
    ID
    First crack
    stress/MPa
    Elastic
    modulus/GPa
    Ultimate
    strength/MPa
    Ultimate
    strain/%
    Toughness/
    MPa
    Efficiency
    factor
    Crack
    number
    Crack
    spacing/mm
    J1W14 2.79(0.43) 17.01(6.58) 2.79(0.43) 0.02(0) 0(0) 1.17(0.24) 1(0)
    J2W14 2.29(0.8) 15.42(10.15) 3.12(0.40) 1.20(0.36) 0.04(0.02) 0.67(0.12) 1.6(0.5) 51(14)
    J3W14 2.27(0.8) 18.03(0.70) 4.08(1.10) 2.21(0.69) 0.07(0.02) 0.65(0.06) 3(1) 42(16)
    J5W0 4.14(0.62) 12.16(2.69) 8.76(0.32) 2.21(0.29) 0.15(0.02) 0.83(0.03) 3.6(0.5) 32(13)
    J5W3 3.38(0.61) 21.71(6.73) 8.13(0.39) 1.97(0.43) 0.13(0) 0.76(0.05) 3.6(0.5) 32(7)
    J5W7 5.68(0.34) 24.10(12.55) 10.30(0.24) 2.46(0.16) 0.18(0) 0.93(0.04) 3(0) 33(11)
    J5W14 4.69(0.84) 20.25(9.34) 9.56(0.74) 2.49(0.14) 0.17(0.01) 0.97(0.05) 3.6(0.5) 29(3)
    Notes: The values in the parentheses are standard deviations.
    下载: 导出CSV

    表  5  ARG-TRC试验拟合模型和ACK模型关键参数

    Table  5.   Critical parameters of test fitting model and ACK model for ARG-TRC

    Specimen ID${V_{\rm{f}}}$/vol%${E_{\rm I}}$/GPa${E_{{\rm I}{\rm I}}}$/GPa${E_{{\rm I}{\rm I}{\rm I}}}$/GPaεI/%σI/MPaεII/%σII/MPaεIII/%σIII/MPa
    J1W14 0.24 14.67 0.018 2.59
    J2W14 0.49 12.16 0.102 0.018 2.19 1.201 2.58
    ACK-J2 0.49 25.13 0 0.262 0.011 2.77 0.722 2.77 2.132 6.46
    J3W14 0.73 20.82 0.103 0.104 0.012 2.50 1.001 2.69 2.893 4.66
    ACK-J3 0.73 25.20 0 0.387 0.013 3.41 0.592 3.41 2.200 9.63
    J5W14 1.09 22.33 0.121 0.325 0.016 3.47 1.201 5.51 2.601 10.06
    ACK-J5 1.09 25.30 0 0.578 0.017 4.41 0.515 4.41 2.241 14.39
    J5W0 1.09 20.78 0.189 0.237 0.021 4.29 0.992 5.59 2.527 9.23
    J5W3 1.09 20.03 0.175 0.267 0.020 3.92 1.407 6.09 2.342 8.59
    J5W7 1.09 18.02 0.168 0.288 0.027 4.81 1.227 7.06 2.458 10.61
    Notes: ${E_{\rm I}}$, ${E_{{\rm I}{\rm I}}}$ and ${E_{{\rm I}{\rm I}{\rm I}}}$—Modulus of ACK model in the first, second and third stage respectively; εI, εII and εIII—Strain of ACK model in the first, second and third stage respectively; σI, σII and σIII—Stress of ACK model in the first, second and third stage respectively.
    下载: 导出CSV

    表  6  ARG-TRC关键参数

    Table  6.   Critical parameters of AGR-TRC

    CaseFabric typeMesh size/mmLayers$r$/mm${V_{\rm{f}}}$/vol%Crack spacing/mmReference
    1 Warp-knitted 3 × 5 1 0.34* 1.45 24 [28]
    3 2.18 15
    2 2.90 13
    2 Bonded 10 × 10 7 0.50* 4.50 10 [29]
    3 Bonded 3.3 × 3.3 6 0.40 6.00 12 [30]
    Notes: r —Equivalent radius of the yarn; The asterisk in the radius column indicates that the data was calculated based on fiber fractions, mesh size and specimen size.
    下载: 导出CSV
  • [1] MECHTCHERINE, VIKTOR. Novel cement-based composites for the strengthening and repair of concrete structures[J]. Construction and Building Materials,2013,41:365-373. doi: 10.1016/j.conbuildmat.2012.11.117
    [2] TRUONG B T, BUI T T, LIMAM A, et al. Experimental investigations of reinforced concrete beams repaired/reinforced by TRC composites[J]. Composite Structures,2017,168:826-839. doi: 10.1016/j.compstruct.2017.02.080
    [3] ORTLEPP R, ORTLEPP S. Textile reinforced concrete for strengthening of RC columns: A contribution to resource conservation through the preservation of structures[J]. Construction and Building Materials,2017,132:150-160. doi: 10.1016/j.conbuildmat.2016.11.133
    [4] XU G, HANNANT D J. Flexural behaviour of combined polypropylene network and glass fibre reinforced cement[J]. Cement and Concrete Composites,1992,14(1):51-61. doi: 10.1016/0958-9465(92)90039-X
    [5] 艾珊霞, 尹世平, 徐世烺. 纤维编织网增强混凝土的研究进展及应用[J]. 土木工程学报, 2015, 48(1):27-40.

    AI S X, YIN S P, XU S L. A review on the development of research and application of textile reinforced concrete[J]. China Civil Engineering Journal,2015,48(1):27-40(in Chinese).
    [6] DU Y, ZHANG M, ZHOU F, et al. Experimental study on basalt textile reinforced concrete under uniaxial tensile loading[J]. Construction and Building Materials,2017,138:88-100. doi: 10.1016/j.conbuildmat.2017.01.083
    [7] BRAMESHUBER W. Report 36: Textile reinforced concrete-state-of-the-art report of RILEM TC 201-TRC[M]. Bagneux: RILEM Publications, 2006, 134-135.
    [8] SILVA F d A, BUTLER M, MECHTCHERINE V, et al. Strain rate effect on the tensile behaviour of textile-reinforced concrete under static and dynamic loading[J]. Materials Science and Engineering A,2011,528(3):1727-1734. doi: 10.1016/j.msea.2010.11.014
    [9] SORANAKOM C, MOBASHER B. Modeling of tension stiffening in reinforced cement composites: Part I. Theoretical modeling[J]. Materials and Structures,2010,43(9):1217-1230. doi: 10.1617/s11527-010-9594-8
    [10] PELED A, COHEN Z, PASDER Y, et al. Influences of textile characteristics on the tensile properties of warp knitted cement based composites[J]. Cement and Concrete Composites,2008,30(3):174-183. doi: 10.1016/j.cemconcomp.2007.09.001
    [11] GOPINATH S, GETTU R, IYER N R. Influence of prestressing the textile on the tensile behaviour of textile reinforced concrete[J]. Materials and Structures,2018,51:64.
    [12] 尹世平, 徐世烺. 纤维编织网增强混凝土的拉伸力学模型[J]. 复合材料学报, 2012, 29(5):222-229.

    YIN S P, XU S L. Tensile mechanical model of textile reinforced concrete[J]. Acta Materiae Compositae Sinica,2012,29(5):222-229(in Chinese).
    [13] HEGGER J, WILL N, BRUCKERMANN O, et al. Load-bearing behaviour and simulation of textile reinforced concrete[J]. Materials and Structures,2006,39(8):765-776. doi: 10.1617/s11527-005-9039-y
    [14] YAO Y, SILVA F A, BUTLER M, et al. Tension stiffening in textile-reinforced concrete under high speed tensile loads[J]. Cement and Concrete Composites,2015,64:49-61. doi: 10.1016/j.cemconcomp.2015.07.009
    [15] ZHU D, LIU S, YAO Y, et al. Effects of short fiber and pre-tension on the tensile behavior of basalt textile reinforced concrete[J]. Cement and Concrete Composites,2019,96:33-45. doi: 10.1016/j.cemconcomp.2018.11.015
    [16] YAO Y, BONAKDAR A, FABER J, et al. Distributed cracking mechanisms in textile-reinforced concrete under high speed tensile tests[J]. Materials and Structures,2016,49(7):2781-2798. doi: 10.1617/s11527-015-0685-4
    [17] LIOR N, EREZ G, ALVA P. Tensile behavior of fabric-cement-based composites reinforced with non-continuous load bearing yarns[J]. Construction and Building Materials,2020,236:117432. doi: 10.1016/j.conbuildmat.2019.117432
    [18] COLOMBO I G, MAGRI A, ZANI G, et al. Textile reinforced concrete: Experimental investigation on design parameters[J]. Materials and Structures,2013,46(11):1933-1951. doi: 10.1617/s11527-013-0017-5
    [19] PELED A, BENTUR A, YANKELEVSKY D. Effects of woven fabric geometry on the bonding performance of cementitious composites[J]. Advanced Cement Based Materials,1998,7(1):20-27. doi: 10.1016/S1065-7355(97)00012-6
    [20] 徐世烺, 阎轶群. 低配网率纤维编织网增强混凝土轴拉力学性能[J]. 复合材料学报, 2011, 28(5):206-213.

    XU S L, YAN Y Q. Mechanical properties of textile reinforced concrete plate at low textile ratios[J]. Acta Materiae Compositae Sinica,2011,28(5):206-213(in Chinese).
    [21] 朱德举, 李高升. 短切纤维及预应力对玄武岩织物增强水泥基复合材料拉伸力学性能的影响[J]. 复合材料学报, 2017, 34(11):2631-2641.

    ZHU D J, LI G S. Effect of short fibers and prestress on the tensile mechanical properties of bas-alt textile reinforced cementitious matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(11):2631-2641(in Chinese).
    [22] 沈荣熹, 崔琪, 李清海. 新型纤维增强水泥基复合材料[M]. 北京: 中国建材工业出版社, 2004, 66-71.

    SHEN R X, CUI Q, LI Q H. New type fiber reinforced cement based composites[M]. Beijing: China Building Materials Press, 2004, 66-71(in Chinese).
    [23] CAGGEGI C, LANOYE E, DJAMA K, et al. Tensile behaviour of a basalt TRM strengthening system: Influence of mortar and reinforcing textile ratios[J]. Composites Part B: Engineering,2017,130:90-102. doi: 10.1016/j.compositesb.2017.07.027
    [24] OHNO S, HANNANT D J. Modeling the stress-strain response of continuous fiber reinforced cement composites[J]. ACI Materials Journal,1994,91(3):306-312.
    [25] BLABER J, ADAIR B, ANTONIOU A. Ncorr: Open-source 2D digital image correlation matlab software[J]. Experimental Mechanics,2015,55(6):1105-1122. doi: 10.1007/s11340-015-0009-1
    [26] FILIPPOU C A, CHRYSOSTOMOU C Z. Analytical model for textile reinforced mortar under monotonic loading[J]. Construction and Building Materials,2020,258:120178. doi: 10.1016/j.conbuildmat.2020.120178
    [27] European Committee for Standardization. Design of concrete structures: General rules and rules for buildings: EN1992-1-1.2004[S]. Brussels: CEN, 2004.
    [28] CONTAMINE R, LARBI A S, HAMELIN P. Contribution to direct tensile testing of textile reinforced concrete (TRC) composites[J]. Materials Science and Engineering A,2011,528(29-30):8589-8598. doi: 10.1016/j.msea.2011.08.009
    [29] MOBASHER B, PELED A, PAHILAJANI J. Distributed cracking and stiffness degradation in fabric-cement composites[J]. Materials and Structures,2006,39(3):317-331.
    [30] PELED A, MOBASHER B. Tensile behavior of fabric cement-based composites: Pultruded and cast[J]. Journal of Materials in Civil Engineering,2007,19(4):340-348. doi: 10.1061/(ASCE)0899-1561(2007)19:4(340)
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  166
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-02-15
  • 录用日期:  2021-02-26
  • 网络出版日期:  2021-03-08
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回