留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

己酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶的制备及其药物缓释性能

徐文静 赵琳琳 郑泽邻 高留意 李征征

徐文静, 赵琳琳, 郑泽邻, 等. 己酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶的制备及其药物缓释性能[J]. 复合材料学报, 2022, 39(1): 266-274. doi: 10.13801/j.cnki.fhclxb.20210302.008
引用本文: 徐文静, 赵琳琳, 郑泽邻, 等. 己酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶的制备及其药物缓释性能[J]. 复合材料学报, 2022, 39(1): 266-274. doi: 10.13801/j.cnki.fhclxb.20210302.008
XU Wenjing, ZHAO Linlin, ZHENG Zelin, et al. Preparation of hexanoyl ethylene glycol chitosan/poloxamer composite hydrogel for drug release[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 266-274. doi: 10.13801/j.cnki.fhclxb.20210302.008
Citation: XU Wenjing, ZHAO Linlin, ZHENG Zelin, et al. Preparation of hexanoyl ethylene glycol chitosan/poloxamer composite hydrogel for drug release[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 266-274. doi: 10.13801/j.cnki.fhclxb.20210302.008

己酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶的制备及其药物缓释性能

doi: 10.13801/j.cnki.fhclxb.20210302.008
基金项目: 2018年度天津市教委科研计划项目(2018KJ110);天津市海洋资源与化学重点实验室(201706);天津市制浆造纸重点实验室开放基金资助项目(201809)
详细信息
    通讯作者:

    赵琳琳,博士,讲师,研究方向为高分子药物载体 E-mail:luxingzhao@hotmail.com

    李征征,博士,副研究员,硕士生导师,研究方向为生物医用高分子水凝胶 E-mail:Li.z.z@tust.edu.cn

  • 中图分类号: TQ460.4; TQ427.26

Preparation of hexanoyl ethylene glycol chitosan/poloxamer composite hydrogel for drug release

  • 摘要: 为减少泊洛沙姆水凝胶的溶胶-凝胶转变温度对浓度的依赖性,以泊洛沙姆(P407)为基材,将己酰化乙二醇壳聚糖(HGC)与泊洛沙姆复合,制备了己酰化乙二醇壳聚糖/泊洛沙姆(HGC/P407)复合水凝胶,利用FTIR、SEM及试管反转法探讨了HGC/P407复合水凝胶的性能,并利用紫外-可见分光光度计(UV-vis)对HGC/P407复合水凝胶的体外药物缓释性能进行表征。结果表明,通过控制HGC的加入量,基于3%泊洛沙姆的HGC/P407复合水凝胶即可发生溶胶-凝胶转变现象,并使HGC/P407复合水凝胶的溶胶-凝胶转变温度处于32~37℃。HGC/P407复合水凝胶具有高度孔隙率,孔隙之间相互连通,孔径大小处于10~90 µm的范围之内。HGC/P407复合水凝胶对抗癌药物吉西他滨的释药量达到82.4%~90.6%,缓释时间可达80 h左右。HGC/P407复合水凝胶在可注射药物载体领域具有重要的应用前景。

     

  • 图  1  己酰化乙二醇壳聚糖(HGC)的合成路线

    Figure  1.  synthetic route of hexanoyl ethylene glycol chitosan (HGC)

    图  2  乙二醇壳聚糖(GC)与HGC的核磁共振氢谱图(a)和FTIR图谱(b);试管反转法测定的HGC溶胶-凝胶转变相图(c)

    Figure  2.  1H NMR (a) and FTIR spectra of glycol chitosan (GC) and HGC (b); Sol-gel transition phase diagram of HGC measured by tube inversion method (c)

    图  3  HGC/P407复合水凝胶、P407及HGC样品FTIR图谱

    Figure  3.  FTIR spectra of HGC/P407 composite hydrogel,P407 and HGC

    图  4  试管反转法测定的HGC/P407复合水凝胶的溶胶-凝胶转变相图

    Figure  4.  Sol-gel transition phase diagram of HGC/P407 measured by tube inversion method

    图  5  70%HGC/P407 (a)和100%HGC/P407 (b)复合水凝胶的温度依赖性流变行为

    Figure  5.  Temperature dependent rheological behavior of 70%HGC/P407 (a) and 100%HGC/P407 (b) composite hydrogel

    G′—Storage modulus; G″ —Loss modulus

    图  6  70%HGC/P407复合水凝胶25℃环境中照片(a)及染色后可注射性图示(b);(c)通过注射针头注射入37℃模具内;(d) 37℃时的凝胶形态

    Figure  6.  70%HGC/P407 composite hydrogel in 25℃ environment (a) and injectability diagram after staining (b); (c) Injection into 37℃; (d) Mold through injection needle with the gel morphology at temperature 37℃

    图  7  70%HGC/P407 (a)和100%HGC/P407 (b)复合水凝胶的频率依赖性流变行为

    Figure  7.  Frequency sweeps of 70%HGC/P407 (a) and 100%HGC/P407 (b) composite hydrogel

    图  8  HGC/P407复合水凝胶的横截面形貌的FE-SEM图像

    Figure  8.  FE-SEM images of the cross-sectional morphology of HGC/P407 composite hydrogel

    图  9  HGC/P407复合水凝胶的溶胀性能

    Figure  9.  Swelling properties of HGC/P407 composite hydrogel

    图  10  HGC/P407复合水凝胶的体外药物释放性能

    Figure  10.  In vitro drug release performance of HGC/P407 composite hydrogel

    表  1  HGC/泊洛沙姆407 (P407)复合水凝胶的配方

    Table  1.   The formula of HGC/poloxamer (P407) composite hydrogel

    SamplesMass ratioTemprerature/℃
    30%HGC/P407 0.3∶1 65
    50%HGC/P407 0.5∶1 50
    70%HGC/P407 0.7∶1 37
    100%HGC/P407 1.0∶1 32
    下载: 导出CSV

    表  2  HGC/P407复合水凝胶对吉西他滨的释放机制

    Table  2.   Release characteristics of encapsulated gemcitabine from HGC/P407 composite hydrogels

    SamplesKnTransport mechanism
    70%HGC/P407 0.68 0.16 Pseudo-Fickian
    100%HGC/P407 0.65 0.12 Pseudo-Fickian
    Notes: K ─ Rate constant; n ─ Release index.
    下载: 导出CSV
  • [1] BYEONGMOON J A, SUNG W K B, YOU H B. Thermosensitive sol-gel reversible hydrogels[J]. Advanced Drug Delivery Reviews,2012,64(1):154-162.
    [2] MEKONNEN G, EFREM G. Hydrogel-A promising technology for optimization of nutrients and water in agricultural and forest ecosystems[J]. International Journal of Environmental Sciences & Natural Resources,2020,23:106-111.
    [3] LI Y F, KILIAN K A. Bridging the gap: from 2D cell culture to 3D microengineered extracellular matrices[J]. Advanced Healthcare Materials,2016,4(18):2780-2796.
    [4] CONSTANTIN M, BUCATARIU S M, DOROFTEI F, et al. Smart composite materials based on chitosan microspheres embedded in thermosensitive hydrogel for controlled delivery of drugs[J]. Carbohydrate Polymers,2017,157:493-502. doi: 10.1016/j.carbpol.2016.10.022
    [5] GAO J, LIU R, WU J, et al. The use of chitosan based hydrogel for enhancing the therapeutic benefits of adipose-derived MSCs for acute kidney injury[J]. Biomaterials,2012,33(14):3673-3681. doi: 10.1016/j.biomaterials.2012.01.061
    [6] SHARMA S, TIWARI S. A review on biomacromolecular hydrogel classification and its applications[J]. International Journal of Biological Macromolecules,2020,162:737-747. doi: 10.1016/j.ijbiomac.2020.06.110
    [7] ZHENG X, DING Z, CHENG W, et al. Microskin-inspired injectable MSC-Laden hydrogels for scarless wound healing with hair follicles[J]. Advanced Healthcare Materials,2020,9(10):e2000041. doi: 10.1002/adhm.202000041
    [8] CHEN Y, QIU Y, WANG Q, et al. Mussel-inspired sandwich-like nanofibers/hydrogel composite with super adhesive, sustained drug release and anti-infection capacity[J]. Chemical Engineering Journal,2020,399:125668. doi: 10.1016/j.cej.2020.125668
    [9] HSIEH H Y, LIN W Y, LEE A L, et al. Hyaluronic acid on the urokinase sustained release with a hydrogel system composed of poloxamer 407: HA/P407 hydrogel system for drug delivery[J]. Plos One,2020,15(3):e0227784. doi: 10.1371/journal.pone.0227784
    [10] DENG Z X, WANG H, GUO B L, et al. Self-healing conductive hydrogels: preparation, properties and applications[J]. Nanoscale,2020,12(3).
    [11] AHMAD H, MOHAMMAD M R, MOHAMMAD A A, et al. A simple route to synthesize conductive stimuli-responsive polypyrrole nanocomposite hydrogel particles with strong magnetic properties and their performance for removal of hexavalent chromium ions from aqueous solution[J]. Journal of Magnetism & Magnetic Materials,2016,412:15-22.
    [12] GAO Y, REN F, DING B, et al. A thermo-sensitive PLGA-PEG-PLGA hydrogel for sustained release of docetaxel[J]. Journal of Drug Targeting,2011,19(7):516-527. doi: 10.3109/1061186X.2010.519031
    [13] MAYOL L, QUAGLIA F, BORZACCHIELLO A, et al. A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: Rheological, mucoadhesive and in vitro release properties[J]. European Journal of Pharmaceutics & Biopharmaceutics,2008,70(1):199-206.
    [14] NANJAWADE B K, MANVI F V, MANJAPPA A S. RETRACTED: In situ-forming hydrogels for sustained ophthalmic drug delivery[J]. Journal of Controlled Release,2007,122(2):119-134. doi: 10.1016/j.jconrel.2007.07.009
    [15] HE Z X, WANG Z H, ZHANG H H, et al. Doxycycline and hydroxypropyl-β-cyclodextrin complex in poloxamer thermal sensitive hydrogel for ophthalmic delivery[J]. Acta Pharmaceutica Sinica B,2011,1(4):254-260. doi: 10.1016/j.apsb.2011.10.004
    [16] WANG Q, HE Y, ZHAO Y, et al. A Thermosensitive heparin-poloxamer hydrogel bridge aFGF to treat spinal cord injury[J]. ACS Applied Materials & Interfaces,2017,9(8):6725. doi: 10.1021/acsami.6b13155
    [17] ELENA G, DONATELLA P, MASSIMO F, et al. Mucosal applications of poloxamer 407-based hydrogels: An overview[J]. Pharmaceutics,2018,10(3):159.
    [18] POPESCU I, TERTOI M, SUFLET D M, et al. Alginate/poloxamer hydrogel obtained by thiolacrylate photopolymerization for the alleviation of the inflammatory response of human keratinocytes[J]. International Journal of Biological Macromolecules,2021,180:418-431. doi: 10.1016/j.ijbiomac.2021.03.082.
    [19] YU S H, ZHANG X Y, TAN G X, et al. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery[J]. Carbohydrate Polymers,2017,155:208-217. doi: 10.1016/j.carbpol.2016.08.073
    [20] JOSÉ L S, CALPENA-CAMPMANY A C, SILVA-ABREU M, et al. Design and evaluation of a multifunctional thermosensitive poloxamer-chitosan-hyaluronic acid gel for the treatment of skin burns[J]. International Journal of Biological Macromolecules,2020,142:412-422. doi: 10.1016/j.ijbiomac.2019.09.113
    [21] 李进, 候冰娜, 韩超越, 等. 可注射乙酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶的制备及药物缓释研究[J]. 材料工程, 2020, 48(5):83-90.

    LI Jin, HOU Bingna, HAN Chaoyue, et al. Preparation of injectable N-acltyl glycol chitosan/poloxamer composite hydrogel for drug release[J]. Journal of Materials Engineering,2020,48(5):83-90(in Chinese).
    [22] WU W, LEE S Y, WU X, et al. Neuroprotective ferulic acid (FA)-glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord[J]. Biomaterials,2014,35(7):2355-2364. doi: 10.1016/j.biomaterials.2013.11.074
    [23] LI Z Z, HYEEUN S, MYEONG O C, et al. Thermo-sensitive injectable glycol chitosan-based hydrogel for treatment of degenerative disc disease[J]. Carbohydrate Polymers,2018,184:342-353. doi: 10.1016/j.carbpol.2018.01.006
    [24] 李征征, 徐子扬, 高留意, 等. 温敏性乙二醇壳聚糖水凝胶的制备及药物缓释性能[J]. 高等学校化学学报, 2016, 37(12):2299-2305.

    LI Zhengzheng, XU Ziyang, GAO Liuyi, et al. Preparation and characterization of thermo-sensitive N-acetyl glycol chitosanhydrogel for sustained drug release[J]. Carbohydrate Polymers,2016,37(12):2299-2305(in Chinese).
    [25] WATT R P, KHATRI H, DIBBLE A R G. Injectability as a function of viscosity and dosing materials for subcutaneous administration[J]. International Journal of Pharmaceutics,2019,554:376-386.
    [26] LEI W, WANFU Z, QINGGUO W, et al. An injectable, dual responsive, and self-healing hydrogel based on oxidized sodium alginate and hydrazide-modified poly (ethyleneglycol)[J]. Molecules,2018,23(3):546. doi: 10.3390/molecules23030546
    [27] HUAPING T, MARRA K G. Injectable, biodegradable hydrogels for tissue engineering applications[J]. Materials,2010,3(3):1746-1767. doi: 10.3390/ma3031746
    [28] YANG X, ZHU Z, LIU Q, et al. Effects of PVA agar contents and irradiation doses on properties of PVA/ws-chitosan/glycerol hydrogels made by g-irradiation followed by freeze-thawing[J]. Radiation Physics & Chemistry,2008,77(8):954-960.
    [29] DINU M V, COCARTA A I, DRAGAN E S. Synthesis, characterization and drug release properties of 3D chitosan/clinoptilolite biocomposite cryogels[J]. Carbohydrate Polymers,2016,153:203-211. doi: 10.1016/j.carbpol.2016.07.111
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1466
  • HTML全文浏览量:  504
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-08
  • 修回日期:  2020-02-02
  • 录用日期:  2020-02-08
  • 网络出版日期:  2021-03-03
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回