留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于新修正偶应力的增强型Reddy层合板热尺度效应分析

司俊岭 张莹 殷大伟

司俊岭, 张莹, 殷大伟. 基于新修正偶应力的增强型Reddy层合板热尺度效应分析[J]. 复合材料学报, 2022, 39(1): 424-430. doi: 10.13801/j.cnki.fhclxb.20210301.003
引用本文: 司俊岭, 张莹, 殷大伟. 基于新修正偶应力的增强型Reddy层合板热尺度效应分析[J]. 复合材料学报, 2022, 39(1): 424-430. doi: 10.13801/j.cnki.fhclxb.20210301.003
SI Junling, ZHANG Ying, YIN Dawei. Thermal scale effect analysis of enhanced Reddy’s laminated composite based on new modified couple stress theory[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 424-430. doi: 10.13801/j.cnki.fhclxb.20210301.003
Citation: SI Junling, ZHANG Ying, YIN Dawei. Thermal scale effect analysis of enhanced Reddy’s laminated composite based on new modified couple stress theory[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 424-430. doi: 10.13801/j.cnki.fhclxb.20210301.003

基于新修正偶应力的增强型Reddy层合板热尺度效应分析

doi: 10.13801/j.cnki.fhclxb.20210301.003
基金项目: 国家自然科学基金(31901479)
详细信息
    通讯作者:

    司俊岭,硕士,讲师,研究方向为复合材料力学  E-mail:sijunling_369@163.com

  • 中图分类号: O343

Thermal scale effect analysis of enhanced Reddy’s laminated composite based on new modified couple stress theory

  • 摘要: 基于新修正偶应力理论,提出复合材料增强型Reddy层合板热尺度效应模型。该模型只含有一个材料长度参数$\ell $,同时将首次引入厚度方向的旋转变量。通过虚功原理推导出平衡方程,并且利用纳维方法,分析热载作用下细观复合材料层合/夹层方板的位移和应力。数值计算表明:该模型能够很好地捕捉板的热尺度效应,随着材料长度参数增大,板的热尺度效应就会增强,另外随着板的跨厚比增加,板的热尺度效应会减弱,但减弱程度会下降。

     

  • 图  1  细观层合板[0°/90°/0°]沿厚度方向分布的位移和应力(a/h=5)

    Figure  1.  Distribution of displacements and stresses of micro-composite laminated plates [0°/90°/0°] through thickness (a/h=5)

    l—Materials length parameter; h—Thickness of plates

    图  2  细观夹层板[0°/core/0°]沿厚度方向分布的位移和应力(a/h=4)

    Figure  2.  Distribution of displacements and stresses of micro-composite sandwich plates [0°/core/0°] through thickness (a/h=4)

    表  1  热载作用下细观层合板[0°/90°/0°]位移与应力的对比(括号内数值为$\eta $)

    Table  1.   Comparison of displacements and stresses of micro-composite laminated plates [0°/90°/0°] under thermal loading (There is $\eta $ in the bracket)

    ${a/h}$${\ell /h}$$\bar u\left( {0,\dfrac{b}{2}, - \dfrac{h}{2}} \right)$$\bar v\left( {\dfrac{a}{2},0, - \dfrac{h}{2}} \right)$$\bar w\left( {\dfrac{a}{2},\dfrac{b}{2},0} \right)$${\bar \sigma _x}\left( {\dfrac{a}{2},\dfrac{b}{2},\dfrac{h}{2}} \right)$${\bar \sigma _y}\left( {\dfrac{a}{2},\dfrac{b}{2}, - \dfrac{h}{2}} \right)$${\bar \tau _{x{\textit{z}}}}\left( {0,\dfrac{b}{2},0} \right)$${\bar \tau _{y{\textit{z}}}}\left( {\dfrac{a}{2},0,0} \right)$${\bar \tau _{xy}}\left( {0,0, - \dfrac{h}{2}} \right)$
    5 0 0.1511/0.1327 0.3139/0.2866 0.6315/0.5410 0.7447/0.7837 1.0272/0.8050 0.0686/0.0696 −0.0802/−0.0644 0.1461/0.1317
    1/4 0.1430(5.36) 0.2971(5.35) 0.5754(8.88) 0.6599(11.39) 1.0444(1.67) 0.0583(15.01) −0.0864(7.73) 0.1383(5.34)
    1/2 0.1240(17.94) 0.2575(17.97) 0.4433(29.80) 0.4615(38.03) 1.0849(5.62) 0.0344(49.84) −0.1009(25.81) 0.1199(17.93)
    1 0.0864(42.82) 0.1769(43.64) 0.1735(72.53) 0.0678(90.90) 1.1670(13.61) −0.0123(117.9) −0.1302(62.34) 0.0827(43.39)
    10 0 0.3149/0.2625 0.4161/0.3542 2.2205/1.8368 0.7658/0.7511 1.1139/0.8722 0.0469/0.0454 −0.0576/−0.0444 0.1148/0.0969
    1/4 0.3019(4.13) 0.3989(4.13) 2.1114(4.91) 0.6996(8.64) 1.1236(0.87) 0.0422(10.02) −0.0594(3.13) 0.1101(4.09)
    1/2 0.2689(14.61) 0.3554(14.59) 1.8354(17.34) 0.5319(30.54) 1.1482(3.08) 0.0302(35.61) −0.0639(10.94) 0.0981(14.55)
    1 0.1896(39.79) 0.2507(39.75) 1.1709(47.27) 0.1295(83.09) 1.2072(8.38) 0.0013(97.23) −0.0747(29.69) 0.0692(39.72)
    20 0 0.6403/0.5232 0.6941/0.5714 8.3894/6.8426 0.7779/0.7392 1.1420/0.8954 0.0255/0.0244 −0.0318/−0.0243 0.1048/0.0860
    1/4 0.6162(3.76) 0.6680(3.76) 8.0583(3.95) 0.7172(7.8) 1.1497(0.67) 0.0233(8.63) −0.0325(2.2) 0.1009(3.72)
    1/2 0.5538(13.51) 0.6005(13.49) 7.2014(14.16) 0.5603(27.97) 1.1699(2.44) 0.0174(31.76) −0.0343(7.86) 0.0907(13.45)
    1 0.3954(38.25) 0.4291(38.18) 5.0251(40.1) 0.1619(79.19) 1.2209(6.91) 0.0025(90.2) −0.0390(22.64) 0.0648(38.17)
    Notes: ${a/h}$—Span-thickness ratio of micro-composite laminated plates; ${\ell /h}$—Length-thickness ratio of micro-composite laminated plates.
    下载: 导出CSV

    表  2  热载作用下细观夹层板[0°/core/0°]位移与应力的对比(括号内数值为$\eta $)

    Table  2.   Comparison of displacements and stresses of micro-composite sandwich plates [0°/core/0°] under thermal loading (There is $\eta $ in the bracket )

    ${a/h}$${\ell /h}$$\bar u\left( {0,\dfrac{b}{2}, - \dfrac{h}{2}} \right)$$\bar v\left( {\dfrac{a}{2},0, - \dfrac{h}{2}} \right)$$\bar w\left( {\dfrac{a}{2},\dfrac{b}{2},0} \right)$${\bar \sigma _x}\left( {\dfrac{a}{2},\dfrac{b}{2},\dfrac{h}{2}} \right)$${\bar \sigma _y}\left( {\dfrac{a}{2},\dfrac{b}{2}, - \dfrac{h}{2}} \right)$${\bar \tau _{x{\textit{z}}}}\left( {0,\dfrac{b}{2},0} \right)$${\bar \tau _{y{\textit{z}}}}\left( {\dfrac{a}{2},0,0} \right)$${\bar \tau _{xy}}\left( {0,0, - \dfrac{h}{2}} \right)$
    4 0 0.5384/0.3310 10.5594/9.3526 12.0011/8.7933 29.3719/27.0127 18.5871/17.5300 1.8548/1.2821 −1.5962/−1.4914 5.4476/4.7534
    1/4 0.3579(33.53) 9.8409(6.8) 9.6279(19.77) 25.5814(12.91) 19.2884(3.77) 1.6175(12.79) −1.7410(9.07) 5.0063(8.1)
    1/2 −0.0140(102.6) 8.4783(19.71) 4.7786(60.18) 17.8069(39.37) 20.6277(10.98) 1.1402(38.53) −2.0107(25.97) 4.1549(23.73)
    1 −0.6743(225.2) 7.1226(32.54) −3.4920(129.1) 4.3304(85.26) 22.0484(18.62) 0.4040(78.22) −2.2279(39.58) 3.1653(41.9)
    8 0 1.2860/0.6431 9.4853/8.2103 24.2632/18.8468 29.6706/26.9638 23.7887/20.4417 1.4998/1.1408 −1.3898/−1.2466 2.6437/2.1730
    1/4 1.1531(10.33) 9.1360(3.68) 22.4860(7.32) 28.3031(4.61) 23.9660(0.75) 1.4253(4.97) −1.4111(1.53) 2.5253(4.48)
    1/2 0.8237(35.95) 8.2853(12.65) 18.0807(25.48) 24.9140(16.03) 24.3989(2.57) 1.2411(17.25) −1.4629(5.26) 2.2357(15.43)
    1 0.0586(95.44) 6.4712(31.78) 7.8705(67.56) 17.0682(42.47) 25.3314(6.49) 0.8193(45.37) −1.5731(13.19) 1.6026(39.38)
    12 0 2.1399/0.9690 8.3364/6.7533 36.4750/25.6378 30.4641/25.4640 25.5342/23.1161 1.1282/0.8838 −1.0635/−0.9493 1.7142/1.2636
    1/4 2.0200(5.6) 8.1096(2.72) 34.8332(4.5) 29.6502(2.67) 25.6144(0.31) 1.0949(2.95) −1.0704(0.65) 1.6575(3.31)
    1/2 1.7053(20.31) 7.5184(9.81) 30.5234(16.32) 27.5143(9.68) 25.8236(1.13) 1.0074(10.71) −1.0882(2.32) 1.5092(11.96)
    1 0.8724(59.23) 6.0002(28.02) 19.1150(47.59) 21.8667(28.22) 26.3635(3.25) 0.7769(31.14) −1.1341(6.64) 1.1245(34.4)
    Notes: ${a/h}$—Span-thickness ratio of micro-composite sandwich plates; ${\ell /h}$—Length-thickness ratio of micro-composite sandwich plates
    下载: 导出CSV
  • [1] WHITNEY J M. The effect of transverse shear deformation on the bending of laminated plates[J]. Journal of Compo-site Materials,1969,3(3):534-547. doi: 10.1177/002199836900300316
    [2] REDDY J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics,1984,51 (4):745-752. doi: 10.1115/1.3167719
    [3] LI X Y, LIU D. Generalized laminated theories based on double superposition hypothesis[J]. International Journal for Numerical Methods in Engineering,1997,40:1197-1212. doi: 10.1002/(SICI)1097-0207(19970415)40:7<1197::AID-NME109>3.0.CO;2-B
    [4] DISCIUVA M. Multilayered anisotropic plate models with continuous interlaminar stresses[J]. Composite Structures,1992,22:149-167. doi: 10.1016/0263-8223(92)90003-U
    [5] DISCIUVA M. Bending. vibration and buckling of simply supported thick multilayered orthotropic plates: An evaluation of a new displacement model[J]. Journal of Sound and Vibration,1986,105:425-442. doi: 10.1016/0022-460X(86)90169-0
    [6] MATSUNAGA H. A comparison between 2-D single-layer and 3-D layer-wise theories for computing inter-laminar stresses of laminated composite and sandwich plates subjected to thermal loading[J]. Composite Structures,2004,64:161-177. doi: 10.1016/j.compstruct.2003.08.001
    [7] 吴振, 赵彧. 增强型Reddy层合梁理论与热应力分析[J]. 复合材料学报, 2012, 29(4):246-250.

    WU Zhen, ZHAO Yu. Enhanced Reddy’s beam theory and thermal stress analysis[J]. Acta Materiae Compositae Sinica,2012,29(4):246-250(in Chinese).
    [8] FLECK N A, MULLER G M, ASHBY M F. Stain gradient plasticity: Theory and experiment[J]. Acta Metallurgica et Materialia,1994,42(2):475-487. doi: 10.1016/0956-7151(94)90502-9
    [9] LLOYD D J. Particle reinforced aluminum and magnesium matrix composites[J]. International Materials Reviews,1994,39:1-23. doi: 10.1179/imr.1994.39.1.1
    [10] MINDLINR D, ESHEL N N. On first strain-gradient theories in linear elasticity[J]. International Journal of Solids and Structures,1968,4:109-124. doi: 10.1016/0020-7683(68)90036-X
    [11] MINDLINR D. Second gradient of strain and surfacetension in linear elasticity[J]. International Journal of Solids and Structures,1965,1(4):417-438. doi: 10.1016/0020-7683(65)90006-5
    [12] TOUPIN R A. Elastic materials with couple stresses[J]. Archive for Rational Mechanics and Analysis,1962,11:385-414. doi: 10.1007/BF00253945
    [13] KOITER W T. Couple stresses in the theory of elasticity. I and II[J]. Proceedings of the Koninkliske Nederlandse Akademie van Wetenschappen, 1964, 67: 17-44.
    [14] MINDLIN R D. Microstructure in linear elasticity[J]. Archive for Rational Mechanics and Analysis,1964,16:51-78. doi: 10.1007/BF00248490
    [15] YANG F, CHONG A C M, LAM D C C, TONG P. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures,2002,39:2731-2743. doi: 10.1016/S0020-7683(02)00152-X
    [16] CHEN Wanji, LI Li, MA Xu. A modified couple stress model for bending analysis of composite laminated beams with first order shear deformation[J]. Composite Structures,2011,93:2723-2732. doi: 10.1016/j.compstruct.2011.05.032
    [17] CHEN Wanji, SI Junling. A model of composite laminated beam based on the global-local theory and new modified couple-stress theory[J]. Composite Structures,2013,103:99-107. doi: 10.1016/j.compstruct.2013.03.021
    [18] WU Zhen, YANG Zhichun, CHEN Wanji. Size-dependent vibration analysis of multi-layer composite micro-beam based on new modified couple stress theory[J]. International Journal for Multi-scale Computational Engineering,2017,15:459-476. doi: 10.1615/IntJMultCompEng.2017020796
    [19] 张大千, 王良秀. 基于新修正偶应力理论的Mindlin层合板热稳定性分析[J]. 计算力学学报, 2019, 36(6):763-767. doi: 10.7511/jslx20181027001

    ZHANG Daqian, WANG Liangxiu. Thermal bucking analysis of composite laminated Mindlin plate founded in the new modified couple stress theory[J]. Chinese Journal of Computational Mechanics,2019,36(6):763-767(in Chinese). doi: 10.7511/jslx20181027001
    [20] THANH C L, FERREIRA A J M, WAHAB M A. A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis[J]. Thin-Walled Structures,2019,145:106427. doi: 10.1016/j.tws.2019.106427
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  621
  • HTML全文浏览量:  310
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-19
  • 修回日期:  2021-02-08
  • 录用日期:  2021-02-22
  • 网络出版日期:  2021-03-02
  • 刊出日期:  2022-01-15

目录

    /

    返回文章
    返回