留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多学科耦合的复合材料帽型加筋板制造仿真

史明 陈普会

史明, 陈普会. 基于多学科耦合的复合材料帽型加筋板制造仿真[J]. 复合材料学报, 2021, 38(12): 4150-4160. doi: 10.13801/j.cnki.fhclxb.20210301.002
引用本文: 史明, 陈普会. 基于多学科耦合的复合材料帽型加筋板制造仿真[J]. 复合材料学报, 2021, 38(12): 4150-4160. doi: 10.13801/j.cnki.fhclxb.20210301.002
SHI Ming, CHEN Puhui. Simulation of manufacture of the hat-stiffened composite plate based on multidisciplinary coupling[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4150-4160. doi: 10.13801/j.cnki.fhclxb.20210301.002
Citation: SHI Ming, CHEN Puhui. Simulation of manufacture of the hat-stiffened composite plate based on multidisciplinary coupling[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4150-4160. doi: 10.13801/j.cnki.fhclxb.20210301.002

基于多学科耦合的复合材料帽型加筋板制造仿真

doi: 10.13801/j.cnki.fhclxb.20210301.002
基金项目: 国家自然科学基金(11572152)
详细信息
    通讯作者:

    陈普会,博士,教授,博士生导师,研究方向为复合材料结构设计 E-mail:phchen@nuaa.edu.cn

  • 中图分类号: TB332

Simulation of manufacture of the hat-stiffened composite plate based on multidisciplinary coupling

  • 摘要: 民机复合材料帽型壁板自动化制造包含自动铺丝(AFP)和热压罐固化过程,工艺复杂,故有必要对其进行理论研究和建模。分别建立粘弹性力学和多孔渗流耦合模型对铺丝过程进行仿真;建立复合材料热传导、化学交联反应、固化动力学、多孔介质渗流和材料性能时变性耦合模型对固化过程进行仿真。应用所建立的耦合模型对AS4/3051-6系列碳纤维/环氧树脂(CFRP)预浸料热压罐固化制备复合材料平板工艺进行仿真,并将其结果与实验结果对比,验证了此方法的有效性。随后,将此方法应用于大型复合材料帽型壁板制造过程仿真,仿真结果表明:(1) AFP头在经过帽型腔体时存在下陷,下陷量与硅橡胶气囊支撑性能相关,应用本文设计芯模下陷量仿真值为原先的38%,铺丝头对蒙皮的影响面积仿真值为原先的30%;(2) 帽型加筋板内部温度与工艺温度不同,其最高温度出现在保温过程结束后升温阶段初期,预测值为工艺温度的106%,且接合处内外层温度差别明显;(3) 帽型加筋壁板内部黏度随时间先减小后急剧上升,内层黏度较外层黏度变化速率更大;(4) 帽型加筋板蒙皮平均厚度预测值由成型前的4.5 mm减少至4 mm,测量厚度为3.88 mm,仿真误差为3.1%。

     

  • 图  1  弹性麦克斯韦方程原理

    Figure  1.  Schematic diagram of Maxwell’s equation of viscoelasticity

    σ—Stress in viscoelastic process; ε1—Strain of the spring; ε2—Strain of the damper; η—Viscosity coefficient; E—Elasticity modulus

    图  2  复合材料板制造过程仿真原理

    Figure  2.  Composite plate manufacturing process simulation schematic diagram

    图  3  CFRP平板热压罐固化工艺参数

    Figure  3.  Curing processing parameters in autoclave of CFRP plate

    图  4  CFRP复合材料板网格划分与边界条件

    Figure  4.  Mesh generation and condition attachment of CFRP plate

    图  5  CFRP平板温度仿真对比

    Figure  5.  Temperature comparison of CFRP plate

    图  6  CFRP平板制造过程固化度对比

    Figure  6.  Curing degree comparison of CFRP plate manufacture

    图  7  CFRP平板减薄量对比

    Figure  7.  Thickness value comparison of CFRP plate

    图  8  CFRP板制造内部各点仿真温度

    Figure  8.  Temperature of internal point of CFRP plate in curing process

    图  9  CFRP平板热压罐加热第一阶段温度变化

    Figure  9.  Temperature inclination of CFRP plate of the first stage in autoclave process

    图  10  CFRP平板热压罐加热第二阶段温度变化

    Figure  10.  Temperature inclination of CFRP plate of the second stage in plate curing process

    图  11  CFRP平板热压罐加热第三阶段温度变化

    Figure  11.  Temperature inclination of CFRP plate of the third stage in plate curing process

    图  12  CFRP平板成型过程仿真黏度

    Figure  12.  Viscosity simulation of CFRP plate in curing process

    图  13  帽型加筋板自动化生产过程

    Figure  13.  Automatic manufacturing process of hat-stiffened plate

    图  14  帽型加筋板蒙皮自动铺丝(AFP)过程

    Figure  14.  Automatic fiber placement (AFP) process of skin of the hat stiffened plate

    图  16  多场耦合自动铺丝不同芯模下陷量仿真对比

    Figure  16.  Sinking quantity comparison with multi-disciplinary simulation in two different mandrel

    图  15  增加芯模内部结构的帽型加筋板自动化制造工艺

    Figure  15.  Automatic manufacturing process of hat-stiffened plate with internal structure

    图  17  帽型加筋板尺寸及铺丝顺序

    Figure  17.  Layer size and sequence of hat-stiffened plate

    图  18  帽型加筋板内部各点温度仿真

    Figure  18.  Simulation of internal point temperature of hat-stiffened plate

    图  19  帽型加筋板制造过程固化度仿真

    Figure  19.  Simulation ofcuring degree of hat-stiffened plate manufacture process

    图  20  帽型加筋板制造过程黏度仿真

    Figure  20.  Simulation of process viscosity of hat-stiffened plate manufacture process

    图  21  帽型加筋板蒙皮厚度预测

    Figure  21.  Prediction of the thickness of the skin of hat-stiffened plate

    表  1  AS4/3501-6碳纤维/环氧树脂复合材料时变性性能

    Table  1.   Time-dependent property of AS4/3501-6 carbon fiber/epoxy composites

    ParameterLinear time-varying description
    ${\rho _{\rm{r}}}$/(${\rm{kg}} \cdot {{\rm{m}}^{ - 3}}$) ${\rho _{\rm{r} } } = \left\{ \begin{array}{l}90\alpha + 1\;232\quad \alpha \leqslant0.45\\1\;272\qquad \quad \;\;\alpha \geqslant0.45\end{array} \right.$
    ${C_{\rm{r}}}$/(${\rm{J}} \cdot {\rm{k}}{{\rm{g}}^{ - 1}} \cdot {{\rm{K}}^{ - 1}}$) ${C_{\rm{r} } } = 4\;184\left( {0.47 + 6 \times { {10}^{ - 4} }T - 0.14\alpha } \right)$
    ${C_{\rm{f}}}$/(${\rm{J}} \cdot {\rm{k}}{{\rm{g}}^{ - 1}} \cdot {{\rm{K}}^{ - 1}}$) ${C_{\rm{f} } } = 1\;390 + 4.5T$
    ${K_{\rm{r}}}$/(${\rm{W}} \cdot {{\rm{m}}^{ - 1}} \cdot {{\rm{K}}^{ - 1}}$) ${K_{\rm{r}}} = 0.042\left[ {3.85 + \left( {0.035T - 0.14} \right)\alpha } \right]$
    ${K_{\rm{f}}}$/(${\rm{W}} \cdot {{\rm{m}}^{ - 1}} \cdot {{\rm{K}}^{ - 1}}$) $K_{\rm{f}}^{\rm{L}} = 0.742 + 9.02 \times {10^{ - 4}}T$
    Notes: ${\rho _{\rm{r}}}$—Density of resin; ${C_{\rm{r}}}$ and ${C_{\rm{f}}}$—Specific heat capacity of resin and fibers; ${K_{\rm{r}}}$ and ${K_{\rm{f}}}$—Heat conductivity coefficient of resin and fibers; $\alpha $—Curing degree; T—Internal instantaneous temperature.
    下载: 导出CSV

    表  2  多学科模型及耦合关系

    Table  2.   Multi-disciplinary model and coupling connections

    Disciplinary modelEquationCoupling objectModeOutput/Input parameter
    Thermal conduction Fourier heat equation Chemical reaction & Curing kinetic Bi-direction T
    Chemical reaction Crosslinking equation Thermal conduction & Curing kinetic Bi-direction Q
    Curing kinetic Partial differential equation Porous filtration & Chemical reaction Bi-direction dα/dt, α
    Porous filtration Darcy’s law Thermal conduction Uni-direction P, ${V_i}$, h
    Time-varying behavior Linear equation All models Bi-direction K, C, $\rho $
    Viscoelastic mechanics Constitutive equation Filtration in AFP Uni-direction $\sigma $
    Notes: AFP—Automatic fiber placement; Q—Chemical reaction heat; P—Tnner forming pressure; Vi—Flow rate during curing process; h—Thickness of the plate or the hat; K—Heat conductivity coefficient; C—Specific heat; ρ—Density of the composite; σ—Stress in AFP.
    下载: 导出CSV

    表  3  CFRP复合材料板多学科性能

    Table  3.   Multi-disciplinary behavior of CFRP plate

    ParameterValueParameterValue
    ${A_1}/{\min ^{ - 1}}$ 2.102×109 $\Delta {E_\mu }/\left( {{\rm{J}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}} \right)$ 9.43×104
    ${A_2}/{\min ^{ - 1}}$ −2.014×109 ${{R/} }\left( { {\rm{J} } \cdot {\rm{mo} }{ {\rm{l} }^{ - 1} } \cdot { {\rm{K} }^{ - 1} } } \right)$ 8.3143
    ${A_3}/{\min ^{ - 1}}$ 1.96×105 ${\mu _\infty }/\left( {{\rm{Pa}} \cdot {\rm{s}}} \right)$ 7.93×10−14
    $\Delta {E_1}/\left( {{\rm{J}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}} \right)$ 8.07×104 ${r_{\rm{f}}}$/m 4×10−6
    $\Delta {E_2}/\left( {{\rm{J}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}} \right)$ 7.78×104 ${K_{\rm{c}}}$(Parallel to fiber) 0.6
    $\Delta {E_3}/\left( {{\rm{J}} \cdot {\rm{mo}}{{\rm{l}}^{ - 1}}} \right)$ 5.66×104 ${K_{\rm{c}}}$(Vertical to fiber) 14.2
    Notes: A1, A2, A3—Frequency factors; ∆E1, ∆E2, ∆E3—Activation energy; $\Delta {E_\mu }$—Activation energy of viscous; ${\mu _\infty }$—Constant; R—Universal gas constant; ${r_{\rm{f}}}$—Radius of carbon fiber; ${K_{\rm{c}}}$—Kozeny constant.
    下载: 导出CSV
  • [1] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. doi: 10.3321/j.issn:1000-3851.2008.01.001

    DU Shanyi, GUAN Zhidong. Strategy consideration for development of advanced technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica,2008,25(1):1-10(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.001
    [2] PRUSTY B G. Free vibration and bulking response of hat-stiffened composite plate under general loading[J]. International Journal of Mechanical Science,2008,50(8):1326-1333. doi: 10.1016/j.ijmecsci.2008.03.003
    [3] KIM G H, CHOI J H, KWEON J H. Manufacture and performance evaluation of the composite hat-stiffened plate[J]. Composite Structures,2010,92(9):2276-2284. doi: 10.1016/j.compstruct.2009.07.019
    [4] 姜茂川, 赵龙, 刘强, 等. VARI液体成型工艺制备复合材料帽型泡沫夹心构件的工艺模拟及验证[J]. 复合材料学报, 2013(S1):266-272.

    JIANG Maochuan, ZHAO Long, LIU Qiang, et al. Process simulation of composite cap sharped foam core sandwich structure by VAIR process[J]. Acta Materiae Compositae Sinica,2013(S1):266-272(in Chinese).
    [5] LI Shujian, PU Yongwei. Effect of mandrel structures on co-curing quality for polymer composite hat stiffened structures[J]. Fiber and Polymers,2015,16(9):1898-1907. doi: 10.1007/s12221-015-5051-1
    [6] 蒲永伟, 湛利华. 复合材料帽型结构热压共固化成型质量研究[J]. 航空材料学报, 2015, 35(5):75-81.

    PU Yongwei, ZHAN Lihua, et al. Research on quality of autoclave co-curing manufacture of composite hat stiffened structure[J]. Journal of Aeronautical Materials,2015,35(5):75-81(in Chinese).
    [7] 马成, 赵聪, 王显峰. 气囊硬度对固化后帽型长桁厚度的影响[J]. 航空学报, 2018, 35(6):162-170.

    MA Cheng, ZHAO Cong, WANG Xianfeng. Effect of thickness of stringer with the hardness of airbag[J]. Acta Aeronautica et Astronautica Sinica,2018,35(6):162-170(in Chinese).
    [8] LOOS A C, SPRINGER G S. Curing of epoxy matrix compo-site[J]. Journal of Composite Materials,1983,17(2):135-169. doi: 10.1177/002199838301700204
    [9] 唐占文, 张博明. 复合材料设计制造一体化技术中的固化变形预测技术[J]. 航空制造技术, 2014(15):32-37. doi: 10.3969/j.issn.1671-833X.2014.15.003

    TANG Zhanwen, ZHANG Boming. The prediction technique of curing deformation in manufacture-design integration of composite material[J]. Aeronautical Manufacturing Technology,2014(15):32-37(in Chinese). doi: 10.3969/j.issn.1671-833X.2014.15.003
    [10] COSTA V A F, SOUSA A C M. Modeling of flow thermo-kinetics during the cure of thick laminated composites[J]. International Journal of Thermal Sciences,2003,42(1):15-22. doi: 10.1016/S1290-0729(02)00003-0
    [11] LI J, YAO X, LIU Y., et al. A study of integrated composite material structure under different fabrication processing[J]. Composite Part A: Applied Science and Manufacturing,2009,40(4):455-462. doi: 10.1016/j.compositesa.2008.10.022
    [12] WANG C, YUE G, BAI G, et al. Compaction behavior and permeability property tests of preforms in vacuum-assisted resin transfer molding using a combined device[J]. Measurement,2016,90:357-364. doi: 10.1016/j.measurement.2016.04.058
    [13] SIMACEK P, SINHA S, et al. A process model for the compaction and saturation of partially impregnated thermoset prepreg tapes[J]. Composites Part A: Applied Science and Manufacturing,2014,64(21):234-244.
    [14] 刘勇, 吴颂平. 热压工艺热-化学-应力三维数值模型及有限元分析[J]. 复合材料学报, 2009, 26(1):134-139. doi: 10.3321/j.issn:1000-3851.2009.01.023

    LIU Yong, WU Songpin. Three dimensional thermol-chemical-stress numerical model and finite element analysis for hot pressing process[J]. Acta Materiae Compositae Sinica,2009,26(1):134-139(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.01.023
    [15] KIM Y K, WHITE S R. Process-induced stress relation analysis of AS4/3501-6 laminate[J]. Journal of Reinforced Plastics and Composites,1997,16(1):2-16. doi: 10.1177/073168449701600102
    [16] DANIEL D, SHIN H, THOMAS H. Compaction of thick composites: Simulation and experiment[J]. Polymer Compo-sites,2004,25(1):49-59. doi: 10.1002/pc.20004
    [17] KIM Y K, SCOTT R W. Viscoelastic analysis of processing-induced residual stresses in thick composite laminates[J]. Mechanics of Advanced Materials and Structures,1997,4(4):361-387. doi: 10.1080/10759419708945889
    [18] 元振毅, 王永军, 王俊彪. 基于材料性能时变性的复合材料固化过程多场耦合数值模拟[J]. 复合材料学报, 2015, 32(1):167-175.

    YUAN Zhenyi, WANG Yongjun, WANG Junbiao. Multi-field coupled numerical simulation for curing process of composite with time-depended properties of materials[J]. Acta Materiae Compositae Sinica,2015,32(1):167-175(in Chinese).
    [19] ZOCHER M A, GROVES S E, ALLEN D H. A three-dimensional finite element formulation for thermoviscoelastic orthotropic media[J]. International Journal for Numerical Methods in Engineering,1997,40(12):2267-2288. doi: 10.1002/(SICI)1097-0207(19970630)40:12<2267::AID-NME156>3.0.CO;2-P
    [20] 谢福原, 王雪明, 李敏, 等. T形加筋板热压罐成型过程压力分布与树脂流动实验研究[J]. 复合材料学报, 2009, 26(6):66-71.

    XIE F Y, WANG X M, LI M, et al. Experimental research on pressure distribution and resin flow of T-stiffened skins in autoclave process[J]. Acta Materiae Compositae Sinica,2009,26(6):66-71(in Chinese).
    [21] GUTOWSKI T G, DILLON G. The elastic deformation of lubricated carbon fiber bundles: Comparison of theory and experiments[J]. Journal of Composite Materials,1992,26(16):2330-2347. doi: 10.1177/002199839202601601
    [22] 胡汉平. 热传导理论[M].北京: 中国科学技术大学出版社, 2010.

    HU Hanping. Heat transport theory[M]. Beijing: University of Science and Technology of China Press, 2010(in Chinese).
    [23] TWARDOWSKI T E, LIN S E, GEIL P H. Curing in thick composite laminates: Experiments and simulation[J]. Journal of Composite Materials,1993,27(3):216-250. doi: 10.1177/002199839302700301
    [24] WALCZYK D, KUPPERS J. Thermal press curing of advanced thermoset composite laminate parts[J]. Compo-sites Part A: Applied Science and Manufacturing,2012,43(4):635-646. doi: 10.1016/j.compositesa.2011.12.008
    [25] GOURICHON B, BINETRUY C, KRAWCZAK P. A new numerical procedure to predict dynamic void content in liquid composite molding[J]. Composites Part A: Applied Science and Manufacturing,2006,37(11):1961-1969. doi: 10.1016/j.compositesa.2005.12.017
    [26] SPRINGER G S, TSAI S W. Thermal conductivities of unidirectional materials[J]. Journal of Composite Materials,1979,1(2):166-173.
    [27] 史明. 航空复合材料帽型加筋板热压罐成型芯模及包含此芯模的热压罐成型全套模具: 中国, CN111572058A[P]. 2020-08-25.

    SHI Ming. The autoclave curing mandrel and the whole set of the mold including the mandrel using to manufacture the composite hat-stiffened plate that use in aeronautics, China, CN111572058A[P]. 2020-08-25(in Chinese).
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  859
  • HTML全文浏览量:  437
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 录用日期:  2021-02-18
  • 网络出版日期:  2021-03-01
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回