留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自供能电致变色器件研究进展

张翔 李文杰 李森然 张虎林 赵九蓬 李垚

张翔, 李文杰, 李森然, 等. 自供能电致变色器件研究进展[J]. 复合材料学报, 2021, 38(6): 1724-1733. doi: 10.13801/j.cnki.fhclxb.20210210.007
引用本文: 张翔, 李文杰, 李森然, 等. 自供能电致变色器件研究进展[J]. 复合材料学报, 2021, 38(6): 1724-1733. doi: 10.13801/j.cnki.fhclxb.20210210.007
ZHANG Xiang, LI Wenjie, LI Senran, et al. Research process in self-powered electrochromic devices[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1724-1733. doi: 10.13801/j.cnki.fhclxb.20210210.007
Citation: ZHANG Xiang, LI Wenjie, LI Senran, et al. Research process in self-powered electrochromic devices[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1724-1733. doi: 10.13801/j.cnki.fhclxb.20210210.007

自供能电致变色器件研究进展

doi: 10.13801/j.cnki.fhclxb.20210210.007
基金项目: 国家自然科学基金(52002097)
详细信息
    通讯作者:

    李垚,博士,教授,博士生导师,研究方向为电致变色材料与器件  Email:yaoli@hit.edu.cn

  • 中图分类号: TN383.1;TB34

Research process in self-powered electrochromic devices

  • 摘要: 电致变色器件(ECDs)在外加电场下颜色可以发生可逆改变,通常ECDs需要接入外部电路提供驱动电压,这限制了ECDs的应用。近年来,研究者将供电器件与ECDs整合,制备成为自供能的ECDs,并取得了显著的进展。太阳能、化学能和力学能均可通过合理利用作为ECDs变色的驱动能源,有效满足了ECDs的实际使用需求,极大地促进了ECDs研究领域的发展。本文综述了近年来自供能ECDs的研究进展,并对未来自供能ECDs的实际应用进行了展望。

     

  • 图  1  电致变色器件的工作原理 (a)、变色实物照片 (b)[18]

    Figure  1.  Working principle of a solid-type photovoltaic-electrochromic device (a), photograph of photovoltaic-electrochromic device (b)[18]

    EC—Electrochromic device; PIN—PIN type silicon thin film solar cells

    图  2  染料敏化太阳电池-电致变色器件结构示意图[21]

    Figure  2.  Schematic diagrams of a dye-sensitized photoelectrochromic smart window[21]

    图  3  基于介孔ITO电极局部表面等离子体共振宽调谐的自供电近红外选择性动态窗示意图 (a)、10 nm的ITO胶体纳米晶的TEM图像 (b)、不同太阳光强度下近红外选择性ECDs的透射光谱 (c)[25]

    Figure  3.  Schematic diagrams of self-powered NIR-selective dynamic windows based on broad tuning of the localized surface plasmon resonance in mesoporous ITO electrodes (a), TEM image of 10 nm-sized ITO colloidal nanocrystals (b) and transmission spectra of the NIR selective ECDs unit upon exposure at different solar light intensities (c)[25]

    Ec—Conduction band minimum; Ef—Fermi energy; Ev—valence band maximum; EL—Electrolyte layer; OCP—Open circuit potential

    图  4  太阳能电致变色装置(ECDs)的概念和结构[40]

    Figure  4.  Concept and structure of solar-powered electrochromic device (ECDs) ((a) Schematic cross section structure of the photovoltaic-electrochromic laminated vertical stack; (b) Schematic of device layer components (numbering corresponds to electrodes in (a)); (c) Photograph and schematic of photovoltaic-electrochromic self-powering concept showing connections required to cause bleaching (top) or coloring (bottom) of ECD under illumination)[40]

    图  5  制备的ECD的光学照片(a)、通过连接PB和Al电极的漂白状态(b)、ECD的相应透射率变化 (c)[49]

    Figure  5.  Optical photo of the as-prepared ECD (a), bleached state by connecting the PB and Al electrodes (b), corresponding transmittance change of the ECD (c)[49]

    图  6  自供电ECDs示意图 (a)、器件的侧视图(b)、葡萄糖生物传感器中的反应序列 (c)、透明ITO电极上电致变色反应的表征 (d)[61-62]

    Figure  6.  Schematic representation of the self-powered ECDs (a), side view of the device (b), reaction sequences taking place in a general glucose biosensor (c), representation of the electrochromic reaction at the transparent ITO electrode (d)[61-62]

    Mox—Oxidized form of the mediators; Mred—Reduced form of the mediators; Eox—Oxidized form of the enzyme active site; Ered—Reduced form of the enzyme active site; G—Analyte; GAC—Product of the enzyme reaction

    图  7  集成全波桥式整流器的自供电智能窗详细结构示意图 (a)、不同持续时间下自供电ECD的紫外吸收光谱 (b)[71]

    Figure  7.  Schematic diagram of the detailed structure of the self-powered smart window integrated with full-wave bridge rectifiers (a),UV absorption spectra of the self-powered ECD obtained at different duration time (b)[71]

  • [1] LI W J, ZHANG X, CHEN X, et al. Effect of independently controllable electrolyte ion content on the performance of all-solid-state electrochromic devices[J]. Chemical Engineering Journal,2020,398:125628. doi: 10.1016/j.cej.2020.125628
    [2] GRANQVIST C G. Electrochromics for smart windows: Oxide-based thin films and devices[J]. Thin Solid Films,2014,564:1-38. doi: 10.1016/j.tsf.2014.02.002
    [3] LEE S H, DESHPANDE R, PARILLA P A, et al. Crystalline WO3 nanoparticles for highly improved electrochromic applications[J]. Advanced Materials,2006,18:763-766. doi: 10.1002/adma.200501953
    [4] PURUSHOTHAMAN K K, MURALIDHARAN G, et al. The effect of annealing temperature on the electrochromic properties of nanostructured NiO films[J]. Solar Energy Materials & Solar Cells,2009,93:1195-1201.
    [5] ZHANG S H, CHEN S, CAO Y, et al. Polyaniline nanoparticle coated graphene oxide composite nanoflakes for bifunctional multicolor electrochromic and supercapacitor applications[J]. Journal of Material Science: Materials in Electronics,2019,30(14):13497-13508. doi: 10.1007/s10854-019-01717-y
    [6] MACHER S, SCHOTT M, SASSI M, et al. New roll-to-roll processable PEDOT-based polymer with colorless bleached state for flexible electrochromic devices[J]. Advanced Functional Materials,2020,30(6):1906254.
    [7] WU W, FANG H, MA H, et al. Boosting transport kinetics of ions and electrons simultaneously by Ti3C2Tx(MXene) addition for enhanced electrochromic performance[J]. Nano-Micro Letters,2021,13:20. doi: 10.1007/s40820-020-00544-9
    [8] HUANG Q, DONG G, XIAO Y, et al. Electrochemical studies of silicon nitride electron blocking layer for all-solid-state inorganic electrochromic device[J]. Electrochimica Acta,2017,252:331-337. doi: 10.1016/j.electacta.2017.08.177
    [9] ZHANG X, LI W J, CHEN X, et al. Inorganic all-solid-state electrochromic devices with reversible color change between yellow-green and emerald green[J]. Chemical Communications,2020,56:10062-10065. doi: 10.1039/D0CC04129G
    [10] BUCH V R, CHAWLA A K, RAWAL S K. Review on electrochromic property for WO3 thin films using different de-position techniques[J]. Materials Today Proceedings,2016,3:1429-1437. doi: 10.1016/j.matpr.2016.04.025
    [11] ZHANG X, DOU S L, LI W J, et al. Preparation of monolayer hollow spherical tungsten oxide films with enhanced near infrared electrochromic performances[J]. Electrochimica Acta,2019,297:223-229. doi: 10.1016/j.electacta.2018.11.179
    [12] BENSON D K, BRANZ H M. Design goals and challenges for a photovoltaic-powered electrochromic window covering[J]. Solar Energy Materials & Solar Cells,1995,39(2-4):203-211.
    [13] BULLOCK J N, XU Y, BENSON D K, et al. Tandem self-powered photovoltaic-electrochromic window coatings[C]. SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation. 1995.
    [14] BULLOCK J N, BECHINGER C, BENSON D K, et al. Semi-transparent a-SiC: H solar cells for self-powered photovoltaic-electrochromic devices[J]. Journal of Non-Crystalline Solids,1996,198:1163-1167.
    [15] LEE S H, GAO W, TRACY C E, et al. Monolithic, self-powered photovoltaic-electrochromic coating for windows[J]. Journal of The Electrochemical Society,1998,145(10):3545-3550. doi: 10.1149/1.1838840
    [16] GAO W, LIU P, CRANDALL R S, et al. Approaches for large-area a-SiC: H photovoltaic-powered electrochromic window coatings[J]. Journal of Non-Crystalline Solids,2000,266:1140-1144.
    [17] HUANG L M, HU C W, LIU H C, et al. Photovoltaic electrochromic device for solar cell module and self-powered smart glass applications[J]. Solar Energy Materials & Solar Cells,2012,99(3):154-159.
    [18] HUANG L M, KUNG C P, HU C W, et al. Tunable photovoltaic electrochromic device and module[J]. Solar Energy Materials & Solar Cells,2012,107:390-395.
    [19] WEI D, SCHERER M R, ASTLEY M, et al. Visualization of energy: Light dose indicator based on electrochromic gyroid nano-materials[J]. Nanotechnology,2015,26(22):225501. doi: 10.1088/0957-4484/26/22/225501
    [20] GREGG B A, BECHINGER C, PITTS R. Photoelectrochromic smart windows[J]. Proceedings of SPIE-The International Society for Optical Engineering,1997,3138:114-123.
    [21] GREGG B A. Photoelectrochromic cells and their applications[J]. Endeavour,1997,21(2):52-55. doi: 10.1016/S0160-9327(97)01026-0
    [22] BECHINGER C, GREGG B A. Development of a new self-powered electrochromic device for light modulation without external power supply[J]. Solar Energy Materials & Solar Cells,1998,54(1-4):405-410.
    [23] PICHOT F, GAO W, GREGG B A, et al. Self-powered electrochromic coatings[J]. Proceedings of SPIE,1999,3788:59-68. doi: 10.1117/12.365773
    [24] COSTA C, IVANOU D, PINTO J, et al. Impact of the architecture of dye sensitized solar cell-powered electrochromic devices on their photovoltaic performance and the ability to color change[J]. Solar Energy,2019,182:22-28. doi: 10.1016/j.solener.2019.02.036
    [25] PATTATHIL P, GIANNUZZI R, MANCA M. Self-powered NIR-selective dynamic windows based on broad tuning of the localized surface plasmon resonance in mesoporous ITO electrodes[J]. Nano Energy,2016,30:242-251. doi: 10.1016/j.nanoen.2016.10.013
    [26] 李不鱼, 张莉, 过家好, 等. 染料敏化TiO2/WO3薄膜电池的光电变色[J]. 化学物理学报, 2005(2):104-107.

    LI B Y, ZHANG L, GUO J H, et al. Photoelectrochromism of dye-sensitized nanoporous TiO2 film combined with electrodeposited WO3 film[J]. Chinese Journal of Chemical Physics,2005(2):104-107(in Chinese).
    [27] XIE Z, JIN X J, CHEN G, et al. Integrated smart electrochromic windows for energy saving and storage applications[J]. Chemical Communications,2014,50(5):608-610. doi: 10.1039/C3CC47950A
    [28] YANG Q H, HAO Q, LEI J P, et al. Portable photoelectrochemical device integrated with self-powered electrochromic tablet for visual analysis[J]. Analytical Chemistry,2018,90(6):3703-3707. doi: 10.1021/acs.analchem.7b05232
    [29] MARTINA F, PUGLIESE M, SERANTONI M, et al. Large area self-powered semitransparent trifunctional device combining photovoltaic energy production, lighting and dynamic shading control[J]. Solar Energy Materials & Solar Cells,2017,160:435-443.
    [30] QIANG P F, CHEN Z W, YANG P H, et al. TiO2 nanowires for potential facile integration of solar cells and electrochromic devices[J]. Nanotechnology,2013,24(43):435403. doi: 10.1088/0957-4484/24/43/435403
    [31] WU X M, ZHENG J M, LUO G, et al. Photoelectrochromic devices based on cobalt complex electrolytes[J]. RSC Advances,2016,6(85):81680. doi: 10.1039/C6RA17666F
    [32] 陈梅, 杨树威, 郑建明, 等. 三苯胺类自供能电致变色材料合成及器件开发[J]. 化学学报, 2013, 71(5):713-716. doi: 10.6023/A13010091

    CHEN Mei, YANG Shuwei, ZHENG Jianming, et al. Synthesis of a novel triphenylamine derivative and exploration of self-powered electrochromic device[J]. Acta Chimica Sinica,2013,71(5):713-716(in Chinese). doi: 10.6023/A13010091
    [33] LI Y L, HAGEN J, HAARER D. Novel photoelectrochromic cells containing a polyaniline layer and a dye-sensitized nanocrystalline TiO2 photovoltaic cell[J]. Synthetic Metals,1998,94(3):273-277. doi: 10.1016/S0379-6779(98)00013-7
    [34] YU X F, LI Y X, ZHU N F, et al. A polyaniline nanofibre electrode and its application in a self-powered photoelectrochromic cell[J]. Nanotechnology,2006,18(1):015201.
    [35] YANG S W, ZHENG J M, LI M, et al. A novel photoelectrochromic device based on poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) thin film and dye-sensitized solar cell[J]. Solar Energy Materials & Solar Cells,2012,97:186-190.
    [36] CHOI D, PARK Y, LEE M, et al. Fabrication of an automatic color-tuned system with flexibility using a dry deposited photoanode[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2018,5(5):643-650. doi: 10.1007/s40684-018-0067-9
    [37] COSTA C, MESQUITA I, ANDRADE L, et al. Photoelectrochromic devices: Influence of device architecture and electrolyte composition[J]. Electrochimica Acta,2016,219:99-106. doi: 10.1016/j.electacta.2016.09.142
    [38] WU X M, ZHENG J M, XU C Y. A newly-designed self-powered electrochromic window[J]. Science China-Chemistry,2016,60(1):84-89.
    [39] JENSEN J, DAM H F, REYNOLDS J R, et al. Manufacture and demonstration of organic photovoltaic-powered electrochromic displays using roll coating methods and printable electrolytes[J]. Journal of Polymer Science Part B: Polymer Physics,2012,50(8):536-545. doi: 10.1002/polb.23038
    [40] DYER A L, BULLOCH R H, ZHOU Y, et al. A vertically integrated solar-powered electrochromic window for energy efficient buildings[J]. Advanced Materials,2014,26(28):4895-4900. doi: 10.1002/adma.201401400
    [41] WU C C, LIOU J C, DIAO C C. Self-powered smart window controlled by a high open-circuit voltage InGaN/GaN multiple quantum well solar cell[J]. Chemical Communications,2015,51(63):12625-12628. doi: 10.1039/C5CC04031K
    [42] CANNAVALE A, EPERON G E, COSSARI P, et al. Perovskite photovoltachromic cells for building integration[J]. Energy & Environmental Science,2015,8(5):1578-1584.
    [43] LEI Q, WANG Y, DONG W X, et al. Self-powered electrochromic sensing for visual determination of PSA in serum using PB as an indicator[J]. Journal of Electroanalytical Chemistry,2019,839:108-115. doi: 10.1016/j.jelechem.2019.03.015
    [44] WANG Y H, ZHANG L N, CUI K, et al. Solar driven electrochromic photoelectrochemical fuel cells for simultaneous energy conversion, storage and self-powered sensing[J]. Nanoscale,2018,10(7):3421-3428. doi: 10.1039/C7NR09275J
    [45] WANG Y H, GAO C M, GE S G, et al. Self-powered sensing platform equipped with Prussian blue electrochromic display driven by photoelectrochemical cell[J]. Biosens Bioelectron,2017,89:728-734. doi: 10.1016/j.bios.2016.11.027
    [46] HAN L, BAI L, DONG S J. Self-powered visual ultraviolet photodetector with Prussian blue electrochromic display[J]. Chemical Communications,2014,50(7):802-804. doi: 10.1039/C3CC47080F
    [47] REDDY B N, MUKKABLA R, DEEPA M, et al. Dual purpose poly(3,4-ethylenedioxypyrrole)/vanadium pentoxide nanobelt hybrids in photoelectrochromic cells and supercapacitors[J]. RSC Advances,2015,5(40):31422-31433. doi: 10.1039/C5RA05015D
    [48] KOLAY A, DAS A, GHOSAL P, et al. New Photoelectrochromic device with chromatic silica/tungsten oxide/copper hybrid film and photovoltaic polymer/quantum dot sensitized anode[J]. ACS Applied Energy Materials,2018,1(8):4084-4095. doi: 10.1021/acsaem.8b00765
    [49] WANG J M, ZHANG L, YU L, et al. A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications[J]. Nature Communications,2014,5:4921. doi: 10.1038/ncomms5921
    [50] NANDA O, GUPTA N, GROVER R, et al. Self-powered electrochromic window using green electrolyte[J]. AIP Advances,2018,8(9):095117. doi: 10.1063/1.5037454
    [51] YANG B, MA D Y, ZHENG E M, et al. A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film[J]. Solar Energy Materials & Solar Cells,2019,192:1-7.
    [52] LI X D, DU Z L, SONG Z Y, et al. Bringing hetero-polyacid-based underwater adhesive as printable cathode coating for self-powered electrochromic aqueous batteries[J]. Advanced Functional Materials,2018,28(23):1800599. doi: 10.1002/adfm.201800599
    [53] ORTEGA L, LLORELLA A, ESQUIVEL J P, et al. Self-powered smart patch for sweat conductivity monitoring[J]. Microsystems & Nanoengineering,2019,5(1):3.
    [54] ZHAI Y L, LI Y, ZHANG H, et al. Self-rechargeable-battery-driven device for simultaneous electrochromic windows, ROS biosensing, and energy storage[J]. ACS Applied Materials & Interfaces,2019,11(31):28072-28077.
    [55] SUN J Z, LI Y, SUN J K, et al. Reversible self-powered fluorescent electrochromic windows driven by perovskite solar cells[J]. Chemical Communications,2019,55(80):12060-12063. doi: 10.1039/C9CC05779J
    [56] ZHANG H, YU Y, ZHANG L L, et al. Self-powered fluorescence display devices based on a fast self-charging/recharging battery (Mg/Prussian blue)[J]. Chemical Science,2016,7(11):6721-6727. doi: 10.1039/C6SC02347A
    [57] MÖLLER M, LEYLAND N, COPELAND G, et al. Self-powered electrochromic display as an example for integrated modules in printed electronics applications[J]. The European Physical Journal Applied Physics,2010,51(3):33205. doi: 10.1051/epjap/2010105
    [58] ZHAI Y L, LI Y, ZHU Z J, et al. Self-driven multicolor electrochromic energy storage windows powered by a “Perpetual” rechargeable battery[J]. ACS Applied Materials & Interfaces,2019,11(51):48013-48020.
    [59] ZHANG S L, CAO S, ZHANG T R, et al. Overcoming the technical challenges in Al anode–based electrochromic energy storage windows[J]. Small Methods,2019,4(1):1900545.
    [60] YU Z Z, CAI G N, REN R R, et al. A new enzyme immunoassay for alpha-fetoprotein in a separate setup coupling an aluminium/Prussian blue-based self-powered electrochromic display with a digital multimeter readout[J]. Analyst,2018,143(13):2992-2996. doi: 10.1039/C8AN00839F
    [61] PELLITERO M A, GUIMERA A, KITSARA M, et al. Quantitative self-powered electrochromic biosensors[J]. Chemical Science,2017,8(3):1995-2002. doi: 10.1039/C6SC04469G
    [62] PELLITERO M A, GUIMERÀ A, VILLA R, et al. iR drop effects in self-powered and electrochromic biosensors[J]. The Journal of Physical Chemistry C,2018,122(5):2596-2607. doi: 10.1021/acs.jpcc.7b11906
    [63] ALLER-PELLITERO M, SANTIAGO-MALAGÓN S, RUIZ J, et al. Fully-printed and silicon free self-powered electrochromic biosensors: Towards naked eye quantification[J]. Sensors and Actuators B: Chemical,2020,306:127535. doi: 10.1016/j.snb.2019.127535
    [64] ZHANG X W, JING Y, ZHAI Q F, et al. Point-of-care diagnoses: Flexible patterning technique for self-powered wearable sensors[J]. Analytical Chemistry,2018,90(20):11780-11784. doi: 10.1021/acs.analchem.8b02838
    [65] ZHANG X W, ZHANG L L, ZHAI Q F, et al. Self-powered bipolar electrochromic electrode arrays for direct displaying applications[J]. Analytical Chemistry,2016,88(5):2543-2547. doi: 10.1021/acs.analchem.6b00054
    [66] BAI L, JIN L H, HAN L, et al. Self-powered fluorescence controlled switch systems based on biofuel cells[J]. Energy & Environmental Science,2013,6(10):3015-3021.
    [67] KAI H, SUDA W, YOSHIDA S, et al. Organic electrochromic timer for enzymatic skin patches[J]. Biosens and Bioelectron,2019,123:108-113. doi: 10.1016/j.bios.2018.07.013
    [68] LIU H, CROOKS R M. Paper-based electrochemical sensing platform with integral battery and electrochromic read-out[J]. Analytical Chemistry,2012,84(5):2528-2532. doi: 10.1021/ac203457h
    [69] KIM S L, CHOI K, TAZEBAY A, et al. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity[J]. ACS Nano,2014,8(3):2377-2386. doi: 10.1021/nn405893t
    [70] YANG X H, ZHU G, WANG S H, et al. A self-powered electrochromic device driven by a nanogenerator[J]. Energy & Environmental Science,2012,5(11):9462-9466.
    [71] YEH M H, LIN L, YANG P K, et al. Motion-driven electrochromic reactions for self-powered smart window system[J]. ACS Nano,2015,9(5):4757-4765. doi: 10.1021/acsnano.5b00706
    [72] SUN J M, PU X, JIANG C Y, et al. Self-powered electrochromic devices with tunable infrared intensity[J]. Science Bulletin,2018,63(12):795-801. doi: 10.1016/j.scib.2018.05.019
    [73] LI S Q, MENG X Y, YI Q, et al. Structural and electrochemical properties of LiMn0.6Fe0.4PO4 as a cathode material for flexible lithium-ion batteries and self-charging power pack[J]. Nano Energy,2018,52:510-516. doi: 10.1016/j.nanoen.2018.08.007
    [74] SUN J G, YANG T N, KUO I S, et al. A leaf-molded transparent triboelectric nanogenerator for smart multifunctional applications[J]. Nano Energy,2017,32:180-186. doi: 10.1016/j.nanoen.2016.12.032
    [75] SONG Y, CHENG X L, CHEN H T, et al. Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator[J]. Journal of Materials Chemistry A,2016,4(37):14298-14306. doi: 10.1039/C6TA05816G
    [76] HE Z Z, GAO B B, LI T, et al. Piezoelectric-driven self-powered patterned electrochromic supercapacitor for human motion energy harvesting[J]. ACS Sustainable Chemistry & Engineering,2018,7(1):1745-1752.
    [77] WANG F X, WANG M J, LIU H C, et al. Multifunctional self-powered e-skin with tactile sensing and visual warning for detecting robot safety[J]. Advanced Materials Interfaces,2020,7(19):2000536. doi: 10.1002/admi.202000536
  • 加载中
图(7)
计量
  • 文章访问数:  1740
  • HTML全文浏览量:  827
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 录用日期:  2021-02-05
  • 网络出版日期:  2021-02-10
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回