留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共价功能化石墨烯超疏水防腐复合涂层材料的制备

刘刚 欧宝立 赵欣欣 彭彩茹 汪雨微

刘刚, 欧宝立, 赵欣欣, 等. 共价功能化石墨烯超疏水防腐复合涂层材料的制备[J]. 复合材料学报, 2021, 38(10): 3236-3246. doi: 10.13801/j.cnki.fhclxb.20210208.002
引用本文: 刘刚, 欧宝立, 赵欣欣, 等. 共价功能化石墨烯超疏水防腐复合涂层材料的制备[J]. 复合材料学报, 2021, 38(10): 3236-3246. doi: 10.13801/j.cnki.fhclxb.20210208.002
LIU Gang, OU Baoli, ZHAO Xinxin, et al. Preparation of covalently functionalized graphene superhydrophobic anticorrosive composite coating materials[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3236-3246. doi: 10.13801/j.cnki.fhclxb.20210208.002
Citation: LIU Gang, OU Baoli, ZHAO Xinxin, et al. Preparation of covalently functionalized graphene superhydrophobic anticorrosive composite coating materials[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3236-3246. doi: 10.13801/j.cnki.fhclxb.20210208.002

共价功能化石墨烯超疏水防腐复合涂层材料的制备

doi: 10.13801/j.cnki.fhclxb.20210208.002
基金项目: 国家自然科学基金面上项目(51775183);清华大学摩擦学国家重点实验室开放基金(SKLTKF17B14);国家级大学生创新创业项目(S202010534001S);湖南省普通高等学校教学改革研究项目(湘教通[2019]291号);湖南省大学生创新创业项目(S202010534033)
详细信息
    通讯作者:

    欧宝立,博士,教授,博士生导师,研究方向为自修复、防腐、超疏水复合材料 E-mail:B.Ou@hnust.edu.cn

  • 中图分类号: TQ174.75

Preparation of covalently functionalized graphene superhydrophobic anticorrosive composite coating materials

  • 摘要: 石墨烯/有机聚合物复合涂层材料较纯聚合物材料具有更优越的阻隔性能,然而由于石墨烯之间高表面能和分子间作用力,使石墨烯在防腐等领域的应用潜力无法充分发挥。本文首先以传统自由基共聚方法合成一种含氟丙烯酸酯共聚物,并采用丙炔胺对氧化石墨烯改性合成炔基化氧化石墨烯,然后利用含氟丙烯酸酯共聚物末端氰基通过点击化学反应以共价键形式接枝在炔基化氧化石墨烯表面。疏水性分析表明,含氟共聚物功能化石墨烯的水接触角达到153°,将制备的功能化石墨烯涂敷于钢板基体时,水接触角提高到171.3°。扫描电镜显示,在炔基化石墨烯表面生长有大量300~600 nm的半球形接枝物。同时,将含氟共聚物功能化石墨烯/环氧树脂复合材料应用于碳素结构钢中,通过Tafel曲线和电化学阻抗谱对其耐蚀性能进行表征。结果显示,氟化石墨烯含量为0.5wt%的复合涂层的电流密度Icorr最低(8.872×10−9 A/cm2),比其他涂层样品低1~2个数量级。综上所述,本实验所制备的涂层材料具有良好的防腐性能,这一研究为开发石墨烯防腐蚀涂层材料提供了一种新的策略。

     

  • 图  1  超疏水改性石墨烯复合材料(FAGO)制备示意图

    Figure  1.  Schematic illustration of the preparation procedures for superhydrophobic modified graphene composites (FAGO)

    图  2  PFOMA-co-St的核磁共振氢谱图

    Figure  2.  1H NMR spectrogram of PFOMA-co-St

    图  3  氧化石墨烯(GO)、炔基化氧化石墨烯(AGO)和FAGO的FTIR图谱

    Figure  3.  FTIR spectra of graphene oxide (GO), alkynylated graphene oxide (AGO) and FAGO

    图  4  GO、AGO和FAGO的TGA曲线

    Figure  4.  TGA curves of GO, AGO and FAGO

    图  5  FAGO的XPS能谱图

    Figure  5.  XPS spectrum of FAGO

    图  6  鳞片石墨、GO 、AGO、FAGO的SEM图像

    Figure  6.  SEM images of flake graphite, GO, AGO and FAGO

    图  7  PFOMA含量不同的FAGO的水接触角

    Figure  7.  Water contact angles of the FAGO with different PFOMA contents (PFOMA∶St=1∶9, 3∶7, 5∶5, 7∶3, 9∶1)

    图  8  不同表面涂覆FAGO时的水接触角

    Figure  8.  Water contact angles of the FAGO attached to different surfaces

    图  9  FAGO0.5wt%/EP ((a)、(d)、(g))、FAGO1.0wt%/EP ((b)、(e)、(h)) 和FAGO1.5wt%/EP ((c)、(f)、(i)) 的SEM图像

    Figure  9.  SEM images of FAGO0.5wt%/EP ((a), (d), (g)), FAGO1.0wt%/EP ((b), (e), (h)) and FAGO1.5wt%/EP ((c), (f), (i))

    图  10  FAGO含量不同的FAGO/环氧树脂复合涂层的水接触角

    Figure  10.  Water contact angles of FAGO/epoxy resin composite coating with different FAGO contents

    图  11  45#碳钢涂覆蜡、FAGO0.5wt%/EP、FAGO1.0wt%/EP和FAGO1.5wt%/EP复合涂层的Tafel曲线

    Figure  11.  Tafel curves of 45# carbon steel with wax, FAGO0.5wt%/EP, FAGO1.0wt%/EP and FAGO1.5wt% /EP composite coatings

    图  12  45#碳钢涂覆FAGO0.5wt%/EP试样的Nyquist图

    Figure  12.  Nyquist plots of 45# carbon steel samples coated with FAGO0.5wt%/EP

    图  13  45#碳钢涂覆FAGO0.5wt%/EP试样的Bode图

    Figure  13.  Bode plots of 45# carbon steel samples coated with FAGO0.5wt%/EP

    图  14  涂覆FAGO0.5wt%/EP的45#碳钢试样在人工模拟海水中浸泡1天、25天和55天及在酸液中浸泡25天、70天后的光学照片

    Figure  14.  Optical photos of 45# carbon steel samples coated with FAGO0.5wt%/EP after soaking in artificial simulated seawater for 1 day, 25 days and 55 days, and soaking in acid solution for 25 days and 70 days

    图  15  FAGO/EP复合涂层的防腐机制模型

    Figure  15.  Anticorrosion mechanism model of FAGO/ EP composite coating

    表  1  涂覆涂层的45#碳钢在3.5wt% NaCl溶液中通过Tafel极化曲线拟合得到的腐蚀参数

    Table  1.   Fitting corrosion data of coated 45# carbon steel samples in 3.5wt% NaCl solution by Tafel polarization curves

    SampleEcorr/VIcorr/(a·cm2)ba/(V·dec−1)bc/(V·dec−1)vcorr/(mm·year−1)
    Wax −0.284 1.665×10−6 7.801 −11.732 1.932×10−2
    FAGO0.5wt%/EP −0.206 8.872×10−9 16.890 −13.401 1.032×10−4
    FAGO1.0wt%/EP −0.226 1.999×10−8 12.817 −13.913 2.327×10−4
    FAGO1.5wt%/EP −0.231 2.111×10−7 4.583 −4.905 2.454×10−3
    Notes: Corrosion current density (Icorr), anodic Tafel slope (ba), corrosion potential (Ecorr), corrosion rate (vcorr) and cathodic Tafel slope (bc) were calculated via electrochemical analyzer instrument.
    下载: 导出CSV
  • [1] DENG Q, CHEN C, LIE Q, et al. Adsorption of aniline from aqueous solution using graphene oxide-modified attapulgite composites[J]. RSC Advances,2018,8(41):23382-23389. doi: 10.1039/C8RA04143A
    [2] LUO H, SUI Y, QI J, et al. Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles[J]. Journal of Alloys and Compounds,2017,729:293-302. doi: 10.1016/j.jallcom.2017.09.102
    [3] ZHANG X, SHI C, LIU E, et al. Effect of interface structure on the mechanical properties of graphene nanosheets reinforced copper matrix composites[J]. ACS Applied Materials & Interfaces,2018,10(43):37586-37601.
    [4] HOU K, GONG P, WANG J, et al. Construction of highly ordered fluorinated graphene composite coatings with various fluorine contents for enhanced lubrication performance[J]. Tribology Letters,2015,60(1):1-12. doi: 10.1007/s11249-015-0577-3
    [5] WANG S, PAN L, LI Q. Tribological behaviors of polytetrafluoroethylene composites under dry sliding and seawater lubrication[J]. Journal of Applied Polymer Science,2013,130(4):2523-2531. doi: 10.1002/app.39454
    [6] GEORGAKILAS V, GEORGITSOPOULOU S, KARAKASSIDES A. Interfacial asymmetric post functionalization of graphene, amphiphilic graphene derivatives self-assembled to 3D superstructures[J]. Chemistry-A European Journal,2018,65(24):17356-17360.
    [7] 周浪, 王涛. 石墨烯/功能聚合物复合材料[J]. 复合材料学报, 2020, 37(5):997-1014.

    ZHOU L, WANG T. Graphene/functional polymer compo-sites[J]. Acta Materiae Compositae Sinica,2020,37(5):997-1014(in Chinese).
    [8] 李玮, 程先华. 稀土Ce接枝碳纳米管-碳纤维多尺度增强体对环氧树脂基复合材料界面性能的影响[J]. 复合材料学报, 2020, 37(11):2789-2797.

    LI W, CHENG X H. Effect of rare earth Ce grafted carbon nanotubes-carbon fiber multi-scale reinforcement on interfacial properties of epoxy matrix composites[J]. Acta Materiae Compositae Sinica,2020,37(11):2789-2797(in Chinese).
    [9] OU B, LI D. Preparation of polystyrene/silica nanocompo-sites by radical copolymerization of styrene with silica macromonomer[J]. Science in China Series B: Chemistry,2007,50(3):385-391.
    [10] QIU S, LI W, ZHENG W, et al. Synergistic effect of polypyrrole-intercalated graphene for enhanced corrosion protection of aqueous coating in 3.5% NaCl solution[J]. ACS Applied Materials & Interfaces,2017,9:34294-34304.
    [11] OU B, ZHOU Z, LIU Q, et al. Covalent functionali zation of graphene with poly(methyl methacrylate) by atom transfer radical polymerization at room temperature[J]. Polymer Chemistry,2012,3:2768-2775. doi: 10.1039/c2py20438j
    [12] 胡小雨, 蒋秋冉, 魏毅, 等. 碳纤维-氧化石墨烯/环氧树脂复合材料的制备及表征[J]. 复合材料学报, 2018, 35(7):1691-1699.

    HU X Y, JIANG Q R, WEI Y, et al. Preparation and characterization of carbon fiber-graphene oxide/epoxy composites[J]. Acta Materiae Compositae Sinica,2018,35(7):1691-1699(in Chinese).
    [13] NASIRI M, SAXON D, REINEKE T. Enhanced mechanical and adhesion properties in sustainable triblock copolymers via non-covalent Interactions[J]. Macromolecules,2018,51(7):2456-2465. doi: 10.1021/acs.macromol.7b02248
    [14] OU B, LI D. Preparation of well-defined polystyrene/silica hybrid nanoparticles by ATRP[J]. Science in China Series B: Chemistry,2008,51(1):51-57. doi: 10.1007/s11426-007-0070-4
    [15] ZHAO J, LI Y, WANG Y, et al. Mild thermal reduction of graphene oxide as a lubrication additive for friction and wear reduction[J]. RSC Advances,2017,7(3):1766-1770. doi: 10.1039/C6RA26488C
    [16] WEI J, CAO Z, WANG M, et al. Origin of hydration lubrication of zwitterions on graphene[J]. Nanoscale,2018,10:16887-16894. doi: 10.1039/C8NR05724A
    [17] FURTAT P, LENZLEITE M, IONESCU E, et al. Synthesis of fluorine-modified polysilazanes via Si–H bond activation and their application as protective hydrophobic coatings[J]. Journal of Materials Chemistry A,2017,5:25509-25521. doi: 10.1039/C7TA07687H
    [18] LIU G, ZHANG K, HUANG S, et al. Transparent omniphobic coating with glass-like wear resistance and polymer like bendability[J]. Angewandte Chemie International Edition,2019,58(35):12004-12009. doi: 10.1002/anie.201904210
    [19] IBRAHIM B, ZAGIDULIN D, BEHAZIN M, et al. The corrosion of copper in irradiated and unirradiated humid air[J]. Corrosion Science,2018,141:53-62. doi: 10.1016/j.corsci.2018.05.024
    [20] ZHAO M, LI H, WEN L, et al. Synthesis and characterization of fluorine-containing polyurethane–acrylate core-shell emulsion[J]. Journal of Applied Polymer Science,2016,133(17):43357-43363.
    [21] SEONGJUN J, SEUNGBAE J, TAESUK J, et al. Fluorine-containing styrenic block copolymers toward high χ and perpendicular lamellae in thin films[J]. Macromolecules,2018,51(18):7152-7159. doi: 10.1021/acs.macromol.8b01325
    [22] LI L, BAI Y, LI L, et al. A Superhydrophobic smart coating for flexible and wearable sensing electronics[J]. Advanced Materials,2017,29:1702517-1702524. doi: 10.1002/adma.201702517
    [23] GUO G, LIU L, ZHANG Q, et al. Solution-processable, durable, scalable, fluorine-grafted graphene-based superhydrophobic coating for highly efficient oil/water separation under harsh environment[J]. New Journal of Chemistry,2018,42(5):3819-3827. doi: 10.1039/C7NJ05182D
    [24] SUN W, WU T, WANG L, et al. The role of graphene loading on the corrosion-promotion activity of graphene/epoxy nanocomposite coatings[J]. Composites Part B: Engineering,2019,173:106916-106923. doi: 10.1016/j.compositesb.2019.106916
    [25] WAN C, CHEN B. Reinforcement and interphase of polymer/graphene oxide nanocomposites[J]. Journal of Materials Chemistry,2012,22:3637-3646. doi: 10.1039/c2jm15062j
    [26] OU B, CHEN M, HUANG R, et al. Preparation and application of novel biodegradable polyurethane copolymer[J]. RSC Advances,2016,6(52):47138-47144. doi: 10.1039/C6RA03064E
    [27] GUO S, JEANETTE J, ZHOU X, et al. Effects of flow, Si inhibition, and concurrent corrosion of dissimilar metals on the corrosion of aluminium in the environment following a loss-of-coolant accident[J]. Corrosion Science,2017,128:100-109. doi: 10.1016/j.corsci.2017.09.012
    [28] LIU X, WANG Z, ZHAO C, et al. Preparation and characterization of silane-modified SiO2, particles reinforced resin composites with fluorinated acrylate polymer[J]. Journal of the Mechanical Behavior of Biomedical Materials,2018,80:11-19. doi: 10.1016/j.jmbbm.2018.01.004
    [29] YANG D, WANG F. Preparation, characterization, and electrochemical performances of graphene/ Ni(OH)2 hybrid nanomaterials[J]. Nanoparticle Research,2013,15(6):1762-1776. doi: 10.1007/s11051-013-1762-7
    [30] 余东升, 付芳, 贾铁昆, 等. 亲水型功能化石墨烯的分散性及其对水泥基复合材料力学性能的影响[J]. 复合材料学报, 2021, 38(2): 622-629.

    YU D S, FU F, JIA T K, et al. Dispersity of hydrophilic functional graphene and its impact onmechanical properties of cement based composites[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 622-629(in Chinese).
    [31] LI L, ZHANG G, SU Z. One-step assembly of phytic acid metal complexes for superhydrophilic coatings[J]. Angewandte Chemie International Edition,2016,55:9093-9096. doi: 10.1002/anie.201604671
    [32] ZHONG J, ZHOU G, HE P, et al. 3D Printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide[J]. Carbon,2017,117:421-426. doi: 10.1016/j.carbon.2017.02.102
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  1350
  • HTML全文浏览量:  504
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 录用日期:  2021-01-22
  • 网络出版日期:  2021-02-09
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回