留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变刚度碳纤维/环氧树脂复合材料薄壁圆管轴向压溃响应与破坏机制

宋涛 余许多 江晟达 余木火 樊良伟 孙泽玉

宋涛, 余许多, 江晟达, 等. 变刚度碳纤维/环氧树脂复合材料薄壁圆管轴向压溃响应与破坏机制[J]. 复合材料学报, 2021, 38(11): 3586-3600. doi: 10.13801/j.cnki.fhclxb.20210126.002
引用本文: 宋涛, 余许多, 江晟达, 等. 变刚度碳纤维/环氧树脂复合材料薄壁圆管轴向压溃响应与破坏机制[J]. 复合材料学报, 2021, 38(11): 3586-3600. doi: 10.13801/j.cnki.fhclxb.20210126.002
SONG Tao, YU Xuduo, JIANG Shengda, et al. Axial crushing response and failure mechanism of variable stiffness carbon fiber/epoxy resin composite thin-walled tube[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3586-3600. doi: 10.13801/j.cnki.fhclxb.20210126.002
Citation: SONG Tao, YU Xuduo, JIANG Shengda, et al. Axial crushing response and failure mechanism of variable stiffness carbon fiber/epoxy resin composite thin-walled tube[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3586-3600. doi: 10.13801/j.cnki.fhclxb.20210126.002

变刚度碳纤维/环氧树脂复合材料薄壁圆管轴向压溃响应与破坏机制

doi: 10.13801/j.cnki.fhclxb.20210126.002
基金项目: 中央高校基本科研业务费专项资金(2232020G-12;2232018A3-02);上海市“科技创新行动计划”高新技术领域项目(18DZ1101003;19511106703);上海汽车工业科技发展基金会2019年产学研项目(1913)
详细信息
    通讯作者:

    孙泽玉,博士,工程师,研究方向为纤维增强树脂基复合材料振动与冲击性能及其应用  E-mail:sunzeyu@dhu.edu.cn

  • 中图分类号: TB332; V214.8

Axial crushing response and failure mechanism of variable stiffness carbon fiber/epoxy resin composite thin-walled tube

  • 摘要: 通过控制缠绕线型改变轴管纤维角度,制备了一种轴向刚度渐变、压溃稳定的碳纤维增强树脂基复合材料(CFRP)变刚度薄壁圆管。对变刚度、[±45°]n以及[90°]n三类CFRP缠绕轴管进行轴向准静态压缩测试,结合数字图像相关技术(DIC)及有限元结果,对比三类结构压溃初始应变模式、损伤演化与应力状态结果,研究了变刚度结构的压溃响应与破坏机制。结果表明:不同纤维角度CFRP轴管因轴向刚度不同,压溃的初始破坏与损伤演化过程相异,三类结构产生不同的压溃响应与破坏模式。变刚度区连续变化的大角度纤维能有效地引发分层和“开花式”混合破坏,缓慢释放应变能,使变刚度CFRP轴管吸能效果明显优于其他两类结构。其峰值载荷为66.97 kN,压溃效率为50.8%,比吸能为10.1 kJ/kg,相对于[±45°]n结构比吸能提升156.35%,压溃效率提升518.76%,相对于[90°]n结构比吸能提升16.9%,压溃效率降低27.3%。

     

  • 图  1  变刚度碳纤维增强树脂基复合材料(CFRP)薄壁圆管坐标系与缠绕角度定义

    Figure  1.  Coordinate system and winding angle of variable stiffness carbon fiber reinforced polymer (CFRP) thin-walled tube

    图  2  变刚度结构与缠绕角度-轴向距离曲线

    Figure  2.  Curve of variable stiffness structure and its winding angle-axial distance

    图  3  整体压溃与单侧压溃CFRP薄壁圆管试样(a)和三类单侧压溃CFRP薄壁圆管试样(b)

    Figure  3.  Whole crushing and one-side crushing CFRP thin-walled tube specimens (a) and three types of one-side crushing CFRP thin-walled tube specimens (b)

    图  4  准静态压缩试验夹具(a)、表面散斑(b)、实际测试(c)

    Figure  4.  Quasi-static crushing test fixture (a), speckle spraying (b) and actual test (c)

    图  5  变刚度CFRP薄壁圆管模型局部放大图(a)、模型及对应缠绕线型(b)

    Figure  5.  Partial magnification of the model of variable stiffness CFRP thin-walled tube (a), the model and corresponding winding pattern (b)

    图  6  典型CFRP薄壁管准静态压溃载荷-位移曲线

    Figure  6.  Typical load-displacement curve of quasi-static crushing test of CFRP thin-walled tube

    图  7  1号CFRP薄壁圆管载荷-位移曲线(a)、压溃残样(b)、DIC应变场(c)

    Figure  7.  Load-displacement curve (a), crushed residual sample (b) and DIC strain field (c) of CN1 CFRP thin-walled tube

    图  8  2号CFRP薄壁圆管载荷-位移曲线(a)、压溃残样(b)、DIC应变场(c)

    Figure  8.  Load-displacement curve (a), crushed residual sample (b) and DIC strain field (c) of CN2 CFRP thin-walled tube

    图  9  3号CFRP薄壁圆管载荷-位移曲线(a)、压溃残样(b)、DIC应变场(c)

    Figure  9.  Load-displacement curve (a), crushed residual sample (b) and DIC strain field (c) of CN3 CFRP thin-walled tube

    图  10  3号CFRP薄壁圆管分层破坏微观原理(a)、横断剪切破坏微观原理(b)

    Figure  10.  Microprinciple of delamination failure (a) and transverse shear failure (b) of CN3 CFRP thin-walled tube

    图  11  1号CFRP薄壁圆管压溃过程(a)、损伤演化与单元删除(b)、局部放大图(c)

    Figure  11.  Crushing process (a), damage evolution and unit deletion (b) and local enlarged view (c) of CN1 CFRP thin-walled tube

    图  12  1号CFRP薄壁圆管后压溃阶段轴向应力分布(a)、纤维方向应力分布(b)和面内剪切应力分布(c)

    Figure  12.  Axial stress distribution (a), fiber directional stress distribution (b) and in-plane shear stress distribution (c) of postcrushing stage finite element results of CN1 CFRP thin-walled tube

    图  13  2号CFRP薄壁圆管压溃过程(a)、损伤演化与单元删除(b)、局部放大图(c)

    Figure  13.  Crushing process (a), damage evolution and unit deletion (b) and local enlarged view (c) of CN2 CFRP thin-walled tube

    图  14  2号CFRP薄壁圆管后压溃阶段轴向应力分布(a)、纤维方向应力分布(b)、面内剪切应力分布(c)

    Figure  14.  Axial stress distribution (a), fiber directional stress distribution (b) and in-plane shear stress distribution (c) of postcrushing stage finite element results of CN2 CFRP thin-walled tube

    图  15  3号CFRP薄壁圆管压溃过程(a)、损伤演化与单元删除(b)和局部放大图(c)

    Figure  15.  Crushing process (a), damage evolution and unit deletion (b) and local enlarged view (c) of CN3 CFRP thin-walled tube

    图  16  3号CFRP薄壁圆管后压溃阶段轴向应力云图(a)、纤维方向应力云图(b)和面内剪切应力云图(c)

    Figure  16.  Axial stress distribution (a), fiber directional stress distribution (b) and in-plane shear stress distribution (c) of postcrushing stage finite element results of CN3 CFRP thin-walled tube

    图  17  三类CFRP薄壁圆管整体压溃耐撞性指标

    Figure  17.  Crashworthiness indexes of the three types of CFRP thin-walled tubes structures in the whole crushing test

    ESEA—Specific energy absorption; Pmax—Peak load; CCFE—Crushing efficiency

    图  18  三类CFRP薄壁圆管单侧压溃载荷-位移曲线

    Figure  18.  Load-displacement curves of three types of CFRP thin-walled tubes in the one-side crushing test

    图  19  三类CFRP薄壁圆管单侧压溃耐撞性指标

    Figure  19.  Crashworthiness indexes of the three types of CFRP thin-walled tubes structures in the one-side crushing test

    表  1  CFRP薄壁圆管整体压溃试样参数

    Table  1.   Parameters of the whole crushing test of CFRP thin-walled tube specimens

    CNSNm/gL/mml/mmWinding angle/(°)
    1 W-CS-[90°]n 397.65 451.10 90
    2 W-CS-[±45°]n 361.45 447.90 45
    3 W-VS-100-45 376.17 448.10 100 90-45
    Notes: CN—Configuration number of test specimens; SN—Serial number of test specimens; m—Mass; L—Total length; l—Length of one-side variable stiffness zone; W—Whole crushing test; CS—Constant stiffness structure; VS—Variable stiffness structure; 100-45—Structure with one-side variable stiffness length of 100 mm and central target angle of 45°.
    下载: 导出CSV

    表  2  CFRP薄壁圆管单侧压溃试样参数

    Table  2.   Parameters of one-side crushing test of CFRP thin-walled tube specimens

    CNSNm/gL/mmWinding angle/(°)
    4 S-VS-[90°]n 88.26 100.30 90
    5 S-VS-[±45°]n 84.84 100.10 45
    6 S-VS-100-45 81.19 99.91 90-45
    Note: S—One-side crushing test.
    下载: 导出CSV

    表  3  T700SC 12K碳纤维/环氧树脂复合材料力学性能参数

    Table  3.   Mechanical property parameters of T700SC 12K carbon fiber/epoxy resin composites

    ParameterValue
    Xt/Yt /MPa2393/57
    E1t/E2t /GPa 146/9.57
    υ12/υ13 0.33
    υ23 0.1
    Xc/Yc /MPa 1000/106.07
    G12 /GPa 6.19
    τ12 /MPa 68
    G13/G23 /GPa 3.5
    τ13/τ23 /MPa 100
    Ply thickness /mm 0.25
    Notes: E1t, E2t—Tensile elastic modulus; υ12, υ13, υ23—Poisson’s ratio; G12, G13, G23—Shear modulus; Xt—Longitudinal tensile strength; Xc—Longitudinal compressive strength; Yt—Transverse tensile strength; Yc—Transverse compressive strength; τ12—In-plane shear stress; τ13, τ23—Interlaminar shear stress.
    下载: 导出CSV
  • [1] 蒋致禹, 顾敏童, 赵永生. 一种薄壁吸能结构的设计优化[J]. 振动与冲击, 2010, 29(2):111-116. doi: 10.3969/j.issn.1000-3835.2010.02.025

    JIANG Zhiyu, GU Mintong, ZHAO Yongsheng. Design and optimization of an energy-absorbing thin-walled structure[J]. Journal of Vibration and Shock,2010,29(2):111-116(in Chinese). doi: 10.3969/j.issn.1000-3835.2010.02.025
    [2] HUO Peng, LI Jianping, XU Shucai, et al. A review on lightweight design and crashworthiness requirements of thin-walled tubular structure[J]. Journal of Mechanical Strength,2020,42(6):1377-1388.
    [3] 汪洋, 吴志斌, 刘富. 复合材料货舱地板立柱压溃响应实验[J]. 复合材料学报, 2020, 37(9):2200-2206.

    WANG Yang, WU Zhibin, LIU Fu. Crush experiment of composite cargo floor stanchions[J]. Acta Materiae Compositae Sinica,2020,37(9):2200-2206(in Chinese).
    [4] 陈静, 唐傲天, 田凯, 等. 碳纤维复合材料防撞梁轻量化设计[J]. 汽车工程, 2020, 42(3):390-395.

    CHEN Jing, TANG Aotian, TIAN Kai, et al. Lightweight design of carbon fiber composite anti-collision beam[J]. Automotive Engineering,2020,42(3):390-395(in Chinese).
    [5] AHMAD B, MUSTAFA S, ABDUL G O. On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments[J]. Thin-Walled Structures,2017,118:137-163. doi: 10.1016/j.tws.2017.05.018
    [6] REUTER C, TROSTER T. Crashworthiness and numerical simulation of hybrid aluminium-CFRP tubes under axial impact[J]. Thin-Walled Structures,2017,117:1-9.
    [7] 黄建城. 含薄弱环节复合材料圆管轴向吸能特性研究[D]. 南京: 南京航空航天大学, 2011.

    HUANG Jiancheng. On the axial energy absorption behaviour of composite tubes with crush triggers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese).
    [8] SIVAKUMAR P, WIM V P, JORIS D, et al. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: Central delamination and triggering modelling[J]. Polymer Testing,2010,29(6):729-741. doi: 10.1016/j.polymertesting.2010.05.010
    [9] 程群峰, 许亚洪, 廖建伟, 等. 引发机制对复合材料波形梁吸能性能的影响及其破坏形貌分析[J]. 复合材料学报, 2008, 25(1):161-167. doi: 10.3321/j.issn:1000-3851.2008.01.027

    CHENG Qunfeng, XU Yahong, LIAO Jianwei, et al. Effects of triggers on the energy absorption behavior of sine-wave beam and the crush morphology[J]. Acta Materiae Compositae Sinica,2008,25(1):161-167(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.027
    [10] SUPIAN A B M, SAPUAN S M, ZUHRI M Y M, et al. Hybrid reinforced thermoset polymer composite in energy absorption tube application: A review[J]. Defence Technology,2018,14(4):291-305. doi: 10.1016/j.dt.2018.04.004
    [11] 曹文锋. CFRP薄壁圆管轴向压溃响应及耐撞性研究[D]. 长沙: 湖南大学, 2017.

    CAO Wenfeng. The research on crushing response and crashworthiness under axial compression of thin-walled CFRP tubes[D]. Changsha: Hunan University, 2017 (in Chinese).
    [12] 张纯金, 任勇生, 张玉环. 受力状态下的复合材料传动轴变形分析[J]. 机械设计与制造, 2019, (9):67-70. doi: 10.3969/j.issn.1001-3997.2019.09.017

    ZHANG Chunjin, REN Yongsheng, ZHANG Yuhuan. Analysis deformation of the composite material drive shaft under forces condition[J]. Machinery Design & Manufacture,2019, (9):67-70(in Chinese). doi: 10.3969/j.issn.1001-3997.2019.09.017
    [13] LOKMAN G. Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study[J]. Composites Part B:Engineering,2018,153:217-232. doi: 10.1016/j.compositesb.2018.07.056
    [14] 王璠, 何一帆, 宋毅, 等. 引发方式、铺层对纤维增强复合材料圆柱壳吸能特性影响的冲击试验研究[J]. 振动工程学报, 2013, 26(1):33-40. doi: 10.3969/j.issn.1004-4523.2013.01.006

    WANG Fan, HE Yifan, SONG Yi, et al. The impact experimental study of evoking type and layup type on absorption energy of fiber reinforced composite cylindrical shell[J]. Journal of vibration Engineering,2013,26(1):33-40(in Chinese). doi: 10.3969/j.issn.1004-4523.2013.01.006
    [15] JOOSTEN M W. Experimental and numerical investigation of triggered composite energy absorbing structures[D]. Sydney: School of Mechanical and Manufacturing Engineering University of New South Wales, 2011.
    [16] 孙士平, 张冰, 邓同强, 等. 复合载荷作用变刚度复合材料回转壳屈曲优化[J]. 复合材料学报, 2019, 36(4):1052-1061.

    SUN Shiping, ZHANG Bing, DENG Tongqiang, et al. Buckling optimization of variable stiffness composite rotary shell under combined loads[J]. Acta Materiae Compositae Sinica,2019,36(4):1052-1061(in Chinese).
    [17] 钟继凡. 基于代理模型的变刚度复合材料结构优化设计[D]. 武汉: 华中科技大学, 2018.

    ZHONG Jifan, Optimization design of variable stiffness composite structures based on meta-models[D]. Wuhan: Huazhong University of Science and Technology, 2018 (in Chinese).
    [18] 孙滔. 碳/环氧编织复合材料层合板挤压特性研究[D]. 南昌: 南昌大学, 2017.

    SUN Tao. Study on the bearing properties of braided carbon/epoxy composite laminates[D]. Nanchang: Nanchang University, 2017 (in Chinese).
    [19] FERHAT K, MURAT D. Failure behaviour of the single lap joints of angle-plied composites under three point bending tests[J]. Journal of Adhesion Science and Technology,2020,34(5):531-548. doi: 10.1080/01694243.2019.1674101
    [20] DANNANA D, PRASHANT E, MARIMUTHU K P. Simulative estimation of reaction force and drill accuracy of CFRP composites[J]. Materials Science Forum,2020,4863:344-350.
    [21] 马聪承. 轻质吸能结构改善汽车碰撞安全性研究[D]. 广州: 华南理工大学, 2017.

    MA chengcong. Improvement of vehicle crashworthiness bylightweight energy absorbing structure[D]. Guangzhou: South China University of Technology, 2017 (in Chinese)
    [22] MEREDITH J, BILSON E, POWE R, et al. A performance versus cost analysis of prepreg carbon fibre epoxy energy absorption structures[J]. Composite Structures,2015,124:206-213. doi: 10.1016/j.compstruct.2015.01.022
    [23] 吴悦雷. 基于有限元仿真的CFRP复合材料抗冲击性能优化[D]. 天津: 中国民航大学, 2018.

    WU Yuelei. Optimization of impact resistance of CFRP composites based on finite element simulation[D]. Tianjin: Civil Aviation University of China, 2018 (in Chinese).
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  911
  • HTML全文浏览量:  446
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-25
  • 录用日期:  2021-01-13
  • 网络出版日期:  2021-01-26
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回