留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的基于两单胞模型的三维角联锁机织复合材料弹性性能数值预测方法及实验验证

曹欣怡 彭秀钟 范进 周梦敬

曹欣怡, 彭秀钟, 范进, 等. 一种改进的基于两单胞模型的三维角联锁机织复合材料弹性性能数值预测方法及实验验证[J]. 复合材料学报, 2021, 38(11): 3704-3713. doi: 10.13801/j.cnki.fhclxb.20210122.003
引用本文: 曹欣怡, 彭秀钟, 范进, 等. 一种改进的基于两单胞模型的三维角联锁机织复合材料弹性性能数值预测方法及实验验证[J]. 复合材料学报, 2021, 38(11): 3704-3713. doi: 10.13801/j.cnki.fhclxb.20210122.003
CAO Xinyi, PENG Xiuzhong, FAN Jin, et al. An improved numerical prediction method of elastic properties based on two unit-cells models for 3D angle-interlock woven composites and experimental verification[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3704-3713. doi: 10.13801/j.cnki.fhclxb.20210122.003
Citation: CAO Xinyi, PENG Xiuzhong, FAN Jin, et al. An improved numerical prediction method of elastic properties based on two unit-cells models for 3D angle-interlock woven composites and experimental verification[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3704-3713. doi: 10.13801/j.cnki.fhclxb.20210122.003

一种改进的基于两单胞模型的三维角联锁机织复合材料弹性性能数值预测方法及实验验证

doi: 10.13801/j.cnki.fhclxb.20210122.003
详细信息
    通讯作者:

    范进,博士,教授,硕士生导师,研究方向为防灾减灾工程与防护工程  E-mail:fanjinem@njust.edu.cn

  • 中图分类号: TB332

An improved numerical prediction method of elastic properties based on two unit-cells models for 3D angle-interlock woven composites and experimental verification

  • 摘要: 为准确预测三维角联锁机织复合材料的宏观弹性性能,对基于CT图像几何参数实测数据建立的内单胞和面单胞细观实体模型进行数值分析,其中面单胞模型采用组合面单胞形式,并开展了三维角联锁机织超高分子量聚乙烯(UHMWPE)纤维/聚氨酯复合材料的经向拉伸实验。结果表明:基于两单胞模型预测该复合材料的宏观弹性模量与实验结果吻合较好,组合面单胞的经向拉伸模量小于内单胞;经向拉伸时复合材料在经纱间接触面处、纬纱沿宽度方向的端部和经纱与基体的交界面处易出现应力集中现象;当纬纱层数小于30层时,应该考虑表面区域对复合材料整体力学性能的影响。

     

  • 图  1  三维角联锁机织超高分子量聚乙烯(UHMWPE)纤维/聚氨酯复合材料经向和纬向断面图

    Figure  1.  Profiles in warp and weft directions of 3D angle-interlock woven ultrahigh molecular weight polyethylene (UHMWPE) fiber/polyurethane composites

    图  2  三维角联锁机织复合材料的细观几何模型[6]

    Figure  2.  Mesoscopic geometric model of 3D angle-interlock woven composites[6]

    图  3  三维角联锁机织复合材料在纺织建模软件TexGen中纱线路径的定义及细观实体模型

    Figure  3.  Definition of yarn path and microscopic solid model of 3D angle-interlock woven composites in TexGen

    图  4  三维角联锁机织复合材料的单胞划分方案

    Figure  4.  Unit-cells division scheme of 3D angle-interlock woven composites

    图  5  三维角联锁机织复合材料的组合面单胞模型

    Figure  5.  Integrated surface unit-cell model of 3D angle-interlock woven composites

    图  6  三维角联锁机织UHWMPE纤维/聚氨酯复合材料的内单胞和组合面单胞有限元模型

    Figure  6.  Interior unit-cell and integrated surface unit-cell finite element model of 3D angle-interlock woven UHWMPE fiber/ polyurethane composites

    图  7  三维角联锁机织UHWMPE纤维/聚氨酯复合材料试件设计方案及经向拉伸试件

    Figure  7.  Design scheme and warp tensile test specimen of 3D angle-interlock woven UHWMPE fiber/polyurethane composites

    图  8  三维角联锁机织UHWMPE纤维/聚氨酯复合材料的经向拉伸实验过程

    Figure  8.  Tensile test process of 3D angle-interlock woven UHWMPE fiber/polyurethane composites in warp direction

    图  9  三维角联锁机织UHWMPE纤维/聚氨酯复合材料经向拉伸应力-应变曲线

    Figure  9.  Tensile stress-strain curves of 3D angle-interlock woven UHWMPE fiber/polyurethane composites in warp direction

    图  10  三维角联锁机织UHMWPE纤维/聚氨酯复合材料经向拉伸应变为0.001时内单胞和组合面单胞中应力分布情况

    Figure  10.  Stress distribution in interior unit-cell and integrated surface unit-cell of 3D angle-interlock woven UHWMPE fiber/polyurethane composites when the tensile strain in warp direction was 0.001

    图  11  三维角联锁机织UHWMPE纤维/聚氨酯复合材料经向拉伸模量和纤维体积含量随纬纱层数的变化规律

    Case 1—Accurate modulus of composites obtained by interior unit-cell and integrated surface unit-cells models; Case 2—Accurate modulus of composites obtained by only interior unit-cell model

    Figure  11.  Change law of tensile modulus in warp direction and fiber volume fraction of 3D angle-interlock woven UHWMPE fiber/polyurethane composites with the number of weft layers

    表  1  三维角联锁机织UHMWPE纤维/聚氨酯复合材料细观几何参数测量

    Table  1.   Mesoscopic geometric parameters’ measurements of 3D angle-interlock woven UHMWPE fiber/ polyurethane composites

    YarnParameterNumber of measurementsAverage valueVariable coefficientInput value
    Weft Height Hw 408 0.492 mm 0.137 0.469 mm
    Width Ww 408 1.919 mm 0.042 1.919 mm
    Space Sw 306 3.651 mm 0.012 3.333* mm
    Warp Width Wj 300 1.139 mm 0.014 1.111* mm
    Height Hj 300 0.382 mm 0.143 0.398 mm
    Inclination θs 255 45.6° 0.074
    Notes: * represents data obtained by equation (10).
    下载: 导出CSV

    表  2  UHMWPE纤维和聚氨酯力学性能参数

    Table  2.   Mechanical properties of UHMWPE fiber and polyurethane

    UHWMPE fiber Ea*/GPa Et[19]/GPa Ga[19]/GPa
    94 3.5 1.0
    Gt[19]/GPa νa[19] νt[19]
    1.2 0.29 0.45
    Polyurethane Em*/MPa νm[19]
    195 0.25
    Notes:Ea, Ga and νa—Axial tensile modulus, shear modulus and Passion’s ratio of fiber, respectively;Et, Gt and νt—Transverse tensile modulus, shear modulus and Passion’s ratio of fiber, respectively;Em and νm—Modulus and Poisson’s ratio of matrix, respectively; * represents data obtained by experiments.
    下载: 导出CSV

    表  3  三维角联锁机织UHWMPE纤维/聚氨酯复合材料试件的经向拉伸模量实验结果

    Table  3.   Experimental results of tensile modulus in warp direction of 3D angle-interlock woven UHWMPE fiber/polyurethane composite specimens

    SpecimenEx/GPaAverage/GPaVariable coefficient/%
    No.1 2.02 2.19 5.34
    No.2 2.14
    No.3 2.27
    No.4 2.33
    No.5 2.20
    Note:Ex—Tensile modulus in x direction.
    下载: 导出CSV

    表  4  三维角联锁机织UHWMPE纤维/聚氨酯复合材料弹性常数的数值预测值

    Table  4.   Results of elastic constants of 3D angle-interlock woven UHWMPE fiber/polyurethane composites by numerical analysis method

    Elastic
    constant
    Interior
    unit-cell
    Integrated surface
    unit-cell
    Overall
    Ex/GPa 3.12 1.75 2.39
    Ey/GPa 17.21 14.20 15.58
    Ez/GPa 0.80 0.46 0.62
    Gxz/GPa 0.79 0.29 0.52
    Gyz/GPa 0.30 0.18 0.24
    Gxy/GPa 0.31 0.20 0.25
    νxz 0.35 0.30 0.32
    νyz 0.01 0.01 0.01
    νxy −0.06 −0.04 −0.05
    Notes:Ex, Ey and Ez—Tensile moduli in x, y and z directions, respectively;Gxz, Gyz and Gxy—Shear moduli in xz, yz and xy directions, respectively;νxz, νyz and νxy—Poisson’s ratios in xz, yz and xy directions, respectively.
    下载: 导出CSV
  • [1] 杨彩云, 李嘉禄. 基于纱线真实形态的三维机织复合材料细观结构及其厚度计算[J]. 复合材料学报, 2005, 22(6):178-182. doi: 10.3321/j.issn:1000-3851.2005.06.031

    YANG Caiyun, LI Jialu. Microstructure and thickness equation of 3d woven composites based on yarn’s true configuration[J]. Acta Materiae Compositae Sinica,2005,22(6):178-182(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.06.031
    [2] 丁辛, 易洪雷. 三维机织结构的几何模型[J]. 复合材料学报, 2003, 20(5):108-113. doi: 10.3321/j.issn:1000-3851.2003.05.020

    DING Xin, YI Honglei. A geometric model of three dimensional woven structures[J]. Acta Materiae Compositae Sinica,2003,20(5):108-113(in Chinese). doi: 10.3321/j.issn:1000-3851.2003.05.020
    [3] 张超, 许希武, 毛春见. 三维编织复合材料渐进损伤模拟及强度预测[J]. 复合材料学报, 2011, 28(2):222-230.

    ZHANG Chao, XU Xiwu, MAO Chunjian. Progressive damage simulation and strength prediction of 3D braided composites[J]. Acta Materiae Compositae Sinica,2011,28(2):222-230(in Chinese).
    [4] 郑君, 温卫东, 崔海涛, 等. 2.5维机织结构复合材料的几何模型[J]. 复合材料学报, 2008, 25(2):143-148. doi: 10.3321/j.issn:1000-3851.2008.02.024

    ZHENG Jun, WEN Weidong, CUI Haitao, et al. Geometric model of 2.5 dimensional woven structures[J]. Acta Materiae Compositae Sinica,2008,25(2):143-148(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.02.024
    [5] 杨振宇, 俸翔, 苏洲, 等. 2.5D编织复合材料细观结构及弹性性能[J]. 宇航材料工艺, 2010, 40(2):67-71. doi: 10.3969/j.issn.1007-2330.2010.02.018

    YANG Zhenyu, FENG Xiang, SU Zhou, et al. Meso-structure and elastic properties of 2.5D braided composites[J]. Aerospace Materials & Technology,2010,40(2):67-71(in Chinese). doi: 10.3969/j.issn.1007-2330.2010.02.018
    [6] 梁仕飞, 矫桂琼, 王波. 三维机织C/C-SiC复合材料弹性性能预测[J]. 复合材料学报, 2011, 28(1):138-142.

    LIANG Shifei, JIAO Guiqiong, WANG Bo. Prediction of elastic properties of three dimensional woven C/C-SiC composite[J]. Acta Materiae Compositae Sinica,2011,28(1):138-142(in Chinese).
    [7] ZHANG D T, CHEN L, WANG Y, et al. Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model[J]. Journal of Materials Science,2017,52(11):6814-6836. doi: 10.1007/s10853-017-0921-0
    [8] 卢子兴, 周原, 冯志海, 等. 2.5D机织复合材料压缩性能实验与数值模拟[J]. 复合材料学报, 2015, 32(1):150-159.

    LU Zixing, ZHOU Yuan, FENG Zhiyuan, et al. Experiment and numerical simulation compressive properties of 2.5D woven fabric composites[J]. Acta Materiae Compositae Sinica,2015,32(1):150-159(in Chinese).
    [9] ZENG X S, BROWN L P, ENDRUWEIT A, et al. Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties[J]. Composites Part A: Applied Science and Manufacturing,2014,56:150-160. doi: 10.1016/j.compositesa.2013.10.004
    [10] GREEN S D, MATVEEV M Y, LONG A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry[J]. Composite Structures,2014,118:284-293. doi: 10.1016/j.compstruct.2014.07.005
    [11] 仲苏洋. 三维机织复合材料损伤演化与失效行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    ZHONG Suyang. Investigation of damage evolution and failure of the three-dimensional woven composites[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).
    [12] SHERBURN M. Geometric and mechanical modelling of textiles[D]. Nottingham: University of Nottingham, 2007.
    [13] LIN H, BROWN L P, LONG A C. Modelling and simulating textile structures using TexGen[J]. Advanced Materials Research,2011,331:44-47. doi: 10.4028/www.scientific.net/AMR.331.44
    [14] BROWN L P, ENDRUWEIT A, LONG A, et al. Characterisa-tion and modelling of complex textile geometries usingTexGen[C]//13th International Conference on TextileComposites. Milan, Italy: IOP Publishing Ltd, 2018: 1-8.
    [15] 孙晓军, 赵晓明, 郑振荣, 等. 新型织物仿真软件TexGen的特点及其应用[J]. 纺织导报, 2013(4):70-73. doi: 10.3969/j.issn.1003-3025.2013.04.019

    SUN Xiaojun, ZHAO Xiaoming, ZHENG Zhenrong, et al. Introduction and application of a new fabric simulation software[J]. China Textile Leader,2013(4):70-73(in Chinese). doi: 10.3969/j.issn.1003-3025.2013.04.019
    [16] ZHANG C, CURIEL-SOSA J L, BUI T Q, Comparison of periodic mesh and free mesh on the mechanical properties prediction of 3D braided composites[J]. Composite Structures, 2017, 159: 667-676.
    [17] 赖卫清, 王秀梅, 辛亮亮, 等. 基于RVE方法的二维机织复合材料弹性性能预测[J]. 玻璃钢/复合材料, 2019(6):64-72.

    LAI Weiqing, WANG Xiumei, XIN Liangliang, et al. Prediction of elastic properties of 2D woven composites based on RVE method[J]. Fiber Reinforced Plastics/Composites,2019(6):64-72(in Chinese).
    [18] ZHANG C, XU X W. Finite element analysis of 3D braided composites based on three unit-cells models[J]. Composite Structures,2013,98:130-142. doi: 10.1016/j.compstruct.2012.11.003
    [19] RUSSELL B P, KARTHIKEYAN K, DESHP-ANDE V S, et al. The high strain rate response of ultra high molecular-weight polyethylene: From fibre to laminate[J]. International Journal of Impact Engineering 2013, 60: 1-9.
    [20] CHAMIS C C. Mechanics of composites materials: Past, present, and future[J]. Journal of Composites Technology and Research,1989,11(1):3-14. doi: 10.1520/CTR10143J
    [21] ZHANG D T, FENG G Y, SUN M Y, et al. Finite element analysis of mesh size effect of 3D angle-interlock woven composites using voxel-based method[J]. Applied Composite Materials,2018,25(4):905-920. doi: 10.1007/s10443-018-9723-z
    [22] 许善迎, 谭焕成, 关玉璞, 等. 三维四向编织复合材料力学性能预测及实验验证[J]. 材料工程, 2018, 46(6):132-140. doi: 10.11868/j.issn.1001-4381.2016.001135

    XU Shanying, TAN Huancheng, GUAN Yupu, et al. Predication and experimental verification on mechanical properties of three-dimensional and four-direction braided composites[J]. Journal of Materials Engineering,2018,46(6):132-140(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.001135
    [23] SUN Jin, WANG Yu, ZHOU Guangming, et al. Finite element analysis of mechanical properties of 3D surface-core braided composites[J]. Polymer Composites,2018,39(4):1076-1088.
    [24] LEVI-SASSON A, MESHI I, MUSTACCHI S, et al. Experimental determination of linear and nonlinear mechanical properties of laminated soft composite material system[J]. Composites Part B: Engineering,2014,57:96-104. doi: 10.1016/j.compositesb.2013.09.043
    [25] 王宇. 三维斜交机织复合材料细观结构与力学性能研究[D]. 南京: 南京航空航天大学, 2017.

    WANG Yu. Research on microstructure and mechanical properties of 3D nonorthogonal woven composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  766
  • HTML全文浏览量:  323
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 录用日期:  2021-01-15
  • 网络出版日期:  2021-01-25
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回