留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚吡咯包覆FeCl3-石墨层间化合物的制备与电化学储钠性能

柳小玄 韩飞 刘洪波 刘金水

柳小玄, 韩飞, 刘洪波, 等. 聚吡咯包覆FeCl3-石墨层间化合物的制备与电化学储钠性能[J]. 复合材料学报, 2021, 38(11): 3818-3826. doi: 10.13801/j.cnki.fhclxb.20210119.002
引用本文: 柳小玄, 韩飞, 刘洪波, 等. 聚吡咯包覆FeCl3-石墨层间化合物的制备与电化学储钠性能[J]. 复合材料学报, 2021, 38(11): 3818-3826. doi: 10.13801/j.cnki.fhclxb.20210119.002
LIU Xiaoxuan, HAN Fei, LIU Hongbo, et al. Preparation and electrochemical sodium storage performance of polypyrrole coated FeCl3-intercalated graphite intercalation compound[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3818-3826. doi: 10.13801/j.cnki.fhclxb.20210119.002
Citation: LIU Xiaoxuan, HAN Fei, LIU Hongbo, et al. Preparation and electrochemical sodium storage performance of polypyrrole coated FeCl3-intercalated graphite intercalation compound[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3818-3826. doi: 10.13801/j.cnki.fhclxb.20210119.002

聚吡咯包覆FeCl3-石墨层间化合物的制备与电化学储钠性能

doi: 10.13801/j.cnki.fhclxb.20210119.002
基金项目: 湖南省科技创新人才计划项目(2020RC3023);湖南省科技重大专项项目(2018GK1030);湖南大学汽车车身先进设计制造国家重点实验室人才培育项目(51965010)
详细信息
    通讯作者:

    韩飞,博士,副教授,博士生导师,研究方向为石墨层间化合物的结构设计与储能应用  E-mail:feihan@hnu.edu.cn

  • 中图分类号: TB332

Preparation and electrochemical sodium storage performance of polypyrrole coated FeCl3-intercalated graphite intercalation compound

  • 摘要: 以FeCl3和天然鳞片石墨为原料,通过融盐法制得1阶FeCl3插层的石墨层间化合物(FeCl3-GIC)。用原位聚合法对FeCl3-GIC进行聚吡咯(PPy)包覆改性,形成具有核壳结构的(FeCl3-GIC)@PPy复合材料。通过多种表征方法研究聚吡咯包覆前后FeCl3-GIC的表面形貌和微观结构变化。结果表明:聚吡咯均匀致密地包覆在十微米级的FeCl3-GIC颗粒外部,包覆层厚度为35 nm,经过聚吡咯包覆后(FeCl3-GIC)@PPy的导电性能显著提高((FeCl3-GIC)@PPy粉末电阻率2.3×10−3 Ω·cm,FeCl3-GIC粉末电阻率3.1×10−3 Ω·cm)。采用多种电化学测试探究产物的钠离子存储特性,聚吡咯外壳能够显著提高FeCl3-GIC作为钠离子电池负极材料的充放电容量、倍率性能和循环性能。在0.1 A·g−1电流密度下循环100次后,FeCl3-GIC的比容量逐渐衰减到157 mA·h·g−1,而(FeCl3-GIC)@PPy材料的比容量达到281 mA·h·g−1左右且容量基本保持不变;在电流密度1 A·g−1的条件下循环500次后,(FeCl3-GIC)@PPy的比容量仍有181 mA·h·g−1,容量保持率约为89%。

     

  • 图  1  30℃-6 h-(FeCl3-GIC)@PPy、0℃-10 h-(FeCl3-GIC)@PPy和FeCl3-GIC的XRD图谱 (a) 和FTIR图谱 (b)

    Figure  1.  XRD patterns (a) and FTIR spectra (b) of 30℃-6 h-(FeCl3-GIC)@PPy, 0℃-10 h-(FeCl3-GIC)@PPy and FeCl3-GIC

    图  2  FeCl3-GIC、0℃-10 h-(FeCl3-GIC)@PPy、30℃-6 h-(FeCl3-GIC)@PPy的SEM图像 ((a)~(c)) ;30℃-6 h-(FeCl3-GIC)@PPy的TEM图像 (d)

    Figure  2.  SEM images of FeCl3-GIC, 0℃-10 h-(FeCl3-GIC)@PPy and 30℃-6 h-(FeCl3-GIC)@PPy ((a)-(c)); TEM image of 30℃-6 h-(FeCl3-GIC)@PPy (d)

    图  3  FeCl3-GIC、0℃-10 h-(FeCl3-GIC)@PPy和30℃-6 h-(FeCl3-GIC)@PPy的微观结构示意图 ((a)~(c))、拉曼光谱 (d)、粉末电阻率 (e)、热重曲线 (f)

    Figure  3.  Schematic diagram of the microstructure ((a)-(c)), Raman spectra (d), powder electronic resistivity (e) and thermogravimetry curves (f) of FeCl3-GIC, 30℃-6 h-(FeCl3-GIC)@PPy and 0℃-10 h-(FeCl3-GIC)@PPy

    图  4  (a) 30℃-6 h-(FeCl3−GIC)@PPy电极的循环伏安曲线;(b)恒流充放电曲线;(c) FeCl3−GIC、30℃-6 h-(FeCl3−GIC)@PPy、0℃-10 h-(FeCl3−GIC)@PPy和PPy电极在100 mA·g−1电流密度下的循环性能图;(d) FeCl3−GIC电极循环后FeCl3溶解逃逸示意图;(e) 30℃-6 h-(FeCl3−GIC)@PPy电极循环100次之后的SEM和(f) TEM图片

    Figure  4.  Cyclic voltagmmograms (a) and galvanostatic discharge/charge profiles (b) of the 30℃-6 h-(FeCl3−GIC)@PPy anode; (c) Comparison of cycle performance of FeCl3−GIC, 0℃-10 h-(FeCl3−GIC)@PPy, 30℃-6 h-(FeCl3−GIC)@PPy and PPy at 100 mA·g−1 for SIBs; (d) FeCl3 dissolution and escape diagram of the FeCl3−GIC anode after cycling several times; SEM (e) and TEM (f) of 30℃-6 h-(FeCl3−GIC)@PPy anode after cycling 100 times

    图  5  (a) FeCl3-GIC、0℃-10 h-(FeCl3-GIC)@PPy和30℃-6 h-(FeCl3-GIC)@PPy电极的倍率性能;(b) FeCl3-GIC、30℃-6 h-(FeCl3-GIC)@PPy和0℃-10 h-(FeCl3-GIC)@PPy电极的奈奎斯特曲线;(c) 30℃-6 h-(FeCl3-GIC)@PPy外层PPy阻碍溶剂化Na+插层示意图;(d) 30℃-6 h-(FeCl3-GIC)@PPy电极的长循环性能

    Figure  5.  (a) Rate permance of FeCl3-GIC, 0℃-10 h-(FeCl3-GIC)@PPy and 30℃-6 h-(FeCl3-GIC)@PPy anode; (b) Nyquist plots of FeCl3-GIC, 30℃-6 h-(FeCl3-GIC)@PPy and 0℃-10 h-(FeCl3-GIC)@PPy anode; (c) Schematic diagram of out layer PPy for 30℃-6 h-(FeCl3-GIC)@PPy blocking solvated Na+ intercalating; (d) Long-cycle performance of the 30℃-6 h-(FeCl3-GIC)@PPy anode

  • [1] MASSÉ R C, LIU C, LI Y, et al. Energy storage through intercalation reactions: electrodes for rechargeable batteries[J]. National Science Review,2017,4(1):26-53. doi: 10.1093/nsr/nww093
    [2] WHITTINGHAM M S. Ultimate limits to intercalation reactions for lithium batteries[J]. Chemical Reviews,2014,114(23):11414-11443. doi: 10.1021/cr5003003
    [3] KINOSHITA H, JEON I, MARUYAMA M, et al. Highly conductive and transparent large-area bilayer graphene realized by MoCl5 intercalation[J]. Advanced Materials,2017,29(41):1702141. doi: 10.1002/adma.201702141
    [4] XU J, DOU Y, WEI Z, et al. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries[J]. Advanced Science,2017,4(10):1700146. doi: 10.1002/advs.201700146
    [5] PENG F, MENG F, GUO Y, et al. Intercalating hybrids of sandwich-like Fe3O4-graphite: synthesis and their synergistic enhancement of microwave absorption[J]. ACS Sustainable Chemistry & Engineering,2018,6(12):16744-16753.
    [6] BOINTON T H, JONES G F, DE SANCTIS A, et al. Large-area functionalized CVD graphene for work function matched transparent electrodes[J]. Scientific Reports,2015,5(1):1-6. doi: 10.9734/JSRR/2015/14076
    [7] JIANG J, YAN P, ZHOU Y, et al. Interplanar growth of 2D non-Van der Waals Co2N-based heterostructures for efficient overall water splitting[J]. Advanced Energy Materials,2020,10(44):2002214. doi: 10.1002/aenm.202002214
    [8] 杨绍斌, 夏英凯, 刘凤霞, 等. 活化剂对焦煤基多孔碳制备的影响及其在锂硫电池中的应用[J]. 复合材料学报, 2020, 37(3):716-723.

    YANG Shaobin, XIA Yingkai, LIU Fengxia, et al. Effect of activator on perparation of coal-based porous carbon and its application in lithium-sulfur batteries[J]. Acta Materiae Compositae Sinica,2020,37(3):716-723(in Chinese).
    [9] ZHANG L, WANG H. Intercalation of multiply solvated hexafluorophospate anion into graphite electrode from mixtures of methyl acetate, ethyl methyl and ethylene carbonates[J]. Journal of Energy Chemistary,2021,58:233-236. doi: 10.1016/j.jechem.2020.10.012
    [10] DIVYA M L, NATARAJAN S, LEE Y S, et al. Highly reversible Na-intercalation into graphite recovered from spent Li-ion batteries for high-energy Na-ion capacitor[J]. Chemsuschem,2020,13(21):5654-5663. doi: 10.1002/cssc.202001355
    [11] ZHANG C, MA J, HAN F, et al. Strong anchoring effect of ferric chloride-graphite intercalation compounds(FeCl3-GICs) with tailored epoxy groups for high-capacity and stable lithium storage[J]. Journal of Materials Chemistry A,2018,6(37):17982-17993. doi: 10.1039/C8TA06670A
    [12] KIM K, GUO Q, TANG L, et al. Reversible insertion of Mg-Cl superhalides in graphite as a cathode for aqueous dual-ion batteries[J]. Angewandte Chemie,2020,132(45):20096-20100. doi: 10.1002/ange.202009172
    [13] LEI Y, CHEN Y, WANG H, et al. A graphite intercalation composite as the anode for the potassium-ion oxygen battery in a concentrated ether-based electrolyte[J]. ACS Applied Materials & Interfaces,2020,12(33):37027-37033.
    [14] ZHOU W, SIT P H L. First-principles understanding of the staging properties of the graphite intercalation compounds towards dual-ion battery applications[J]. ACS Omega,2020,5(29):18289-18300. doi: 10.1021/acsomega.0c01950
    [15] WANG F, YI J, WANG Y, et al. Graphite intercalation compounds(GICs): A new type of promising anode material for lithium-ion batteries[J]. Advanced Energy Materials,2014,4(2):1300600. doi: 10.1002/aenm.201300600
    [16] LI Z, ZHANG C, HAN F, et al. Improving the cycle stability of FeCl3-graphite intercalation compounds by polar Fe2O3 trapping in lithium-ion batteries[J]. Nano Research,2019,12(8):1836-1844. doi: 10.1007/s12274-019-2444-2
    [17] 魏文丽. 聚吡咯基电极材料的设计及其在锂电池中的应用[D]. 兰州: 兰州大学, 2019.

    WEI Wenli. Design of polypyrrole-based electrode materials and its application in lithium battery[D]. Lanzhou: Lanzhou University, 2019(in Chinese).
    [18] XU J, WANG D X, YUAN Y, et al. Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application[J]. Organic Eletronics,2015,24:153-159.
    [19] ZHONG X B, WANG H Y, YANG Z Z, et al. Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithiun-ion batteries[J]. Journal of Power Sources,2015,296:298-304. doi: 10.1016/j.jpowsour.2015.07.047
    [20] CHEN G F, LI XX, ZHANG L Y, et al. A porous perchlorate-doped polypyrrole nanocoating on nickel nanotube arrays for stable wide-potential-window supercapacitors[J]. Advanced Materials,2016,28(35):7680-7687. doi: 10.1002/adma.201601781
    [21] 汪杰. 聚吡咯及其复合材料的制备及性能研究[D]. 合肥: 中国科学技术大学, 2017.

    WANG Jie. Fabrication and application of polypyrrole and its composites[D]. Hefei: University of Science and Technology of China, 2017(in Chinese).
    [22] 沈兰波. 导电聚合物合成新策略探索[D]. 济南: 山东大学, 2020.

    SHEN Lanbo. New strategies for the synthesis of conducting polymers[D]. Jinan: Shandong University, 2020(in Chinese).
    [23] LI Z, ZHANG C, HAN F, et al. Towards high-volumetric performance of Na/Li-ion batteries: a better anode material with molybdenum pentachloride-graphite intercalation compounds(MoCl5-GICs)[J]. Journal of Materials Chemistry A,2020,8(5):2430-2438. doi: 10.1039/C9TA12651A
    [24] LI D, ZHU M, CHEN L, et al. Sandwich-like FeCl3@C as high-performance anode materials for potassium-ion batteries[J]. Advanced Materials Interfaces,2018,5(15):1800606. doi: 10.1002/admi.201800606
    [25] SUN Y, HAN F, ZHANG C, et al. Intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium-ion batteries[J]. Energy Technology,2019,7(4):1801091. doi: 10.1002/ente.201801091
    [26] HAN F, LI D, LI W, et al. Nanoengineered polypyrrole-coated Fe2O3@C multifunctional composites with an improved cycle stability as lithium-ion anodes[J]. Advanced Functional Materials,2013,23(13):1692-1700. doi: 10.1002/adfm.201202254
    [27] HAN F, ZHANG C, SUN B, et al. Dual-carbon phase-protective cobalt sulfide nanoparticles with cable-type and mesoporous nanostructure for enhanced cycling stability in sodium and lithium ion batteries[J]. Carbon,2017,118:731-742. doi: 10.1016/j.carbon.2017.03.038
    [28] CHUNG G C, KIM H J, YU S I, et al. Origin of graphite exfoliation an investigation of the important role of solvent cointercalation[J]. Journal of The Electrochemical Society,2000,147(12):4391-4398. doi: 10.1149/1.1394076
    [29] JACHE B, ADELHELM P. Use of graphite as a highly reversibie electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53(38):10169-10173. doi: 10.1002/anie.201403734
  • 加载中
图(5)
计量
  • 文章访问数:  1210
  • HTML全文浏览量:  492
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 录用日期:  2021-01-13
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回