留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异质结材料用于肿瘤诊断与治疗的研究进展

毛誉蓉 赵建魁 周雄 杨为中 邓怡

毛誉蓉, 赵建魁, 周雄, 等. 异质结材料用于肿瘤诊断与治疗的研究进展[J]. 复合材料学报, 2021, 38(6): 1703-1723. doi: 10.13801/j.cnki.fhclxb.20210118.002
引用本文: 毛誉蓉, 赵建魁, 周雄, 等. 异质结材料用于肿瘤诊断与治疗的研究进展[J]. 复合材料学报, 2021, 38(6): 1703-1723. doi: 10.13801/j.cnki.fhclxb.20210118.002
MAO Yurong, ZHAO Jiankui, ZHOU Xiong, et al. Recent progress of heterojunction materials for tumor diagnosis and treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1703-1723. doi: 10.13801/j.cnki.fhclxb.20210118.002
Citation: MAO Yurong, ZHAO Jiankui, ZHOU Xiong, et al. Recent progress of heterojunction materials for tumor diagnosis and treatment[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1703-1723. doi: 10.13801/j.cnki.fhclxb.20210118.002

异质结材料用于肿瘤诊断与治疗的研究进展

doi: 10.13801/j.cnki.fhclxb.20210118.002
基金项目: 国家自然科学基金青年科学基金项目(81801848);国家自然科学基金委员会与香港研究资助局联合科研资助基金(81961160736);中科协青年人才托举工程;四川大学-泸州市人民政府战略合作项目(2020CDLZ-5)
详细信息
    通讯作者:

    杨为中,博士,教授,研究生导师,研究方向为组织再生修复材料、靶向药物控释系统等  E-mail:ywz@scu.edu.cn

    邓怡,博士,副研究员,研究生导师,研究方向医用特种高分子及植入器械、肿瘤/细菌光治疗等 E-mail:dengyibandeng@scu.edu.cn

  • 中图分类号: R730;TB332

Recent progress of heterojunction materials for tumor diagnosis and treatment

  • 摘要: 癌症是目前全球范围内引起死亡的主要疾病之一,受到人们的高度重视。然而传统的癌症治疗方法仍存在许多缺陷,严重影响了癌症治疗效果并给患者带来了许多不利影响。随着纳米材料的发展,光动力疗法(PDT)和光热疗法(PTT)等新型治疗方法有效弥补了传统治疗方法的不足。其中,将不同成分的纳米半导体材料组合成一个纳米结构的异质结在光动力疗法和光热疗法上有着优异的表现。异质结材料因其特有光学特性和结构设计性,在催化、检测、多模态成像和肿瘤的协同治疗领域中有很大的应用潜力。本文根据结构分类对不同种类异质结的原理进行了大致介绍,并对近年来异质结材料在肿瘤的单重治疗、协同治疗与诊疗一体化中的研究进展进行了系统性的综述,最后对异质结材料在癌症诊断治疗领域的未来发展方向进行了展望。

     

  • 图  1  不同种异质结中电子-空穴对分离示意图[51-52]

    Figure  1.  Schematic representation of electron-hole pair separation in different kinds of heterojunctions[51-52] ((a) Single semiconductor and heterojunctions; (b) Conventional type II heterojunctions; (c) p-n heterojunctions; (d) Schottky heterojunctions; (e) Direct Z-type heterojunctions; (f) CNT heterojunctions; (g) Graphene heterojunctions)

    CB—Conduction band; VB—Valence band; CNT—Carbon nanotube

    图  2  肖特基异质结Au-Bi2S3 HNSC的 ((a)~(e)) 催化性能研究和用于放射治疗过程的示意图 (f)[91]

    Figure  2.  Study of the catalytic performance ((a)-(e)) and the schematic (f) representation of the radiation therapy procedure of Schottky heterojunction Au-Bi2S3 HNSC[91]

    图  3  用于光动力治疗的g-C3N4-Au NPs的细胞内活性氧(ROS)的产生检测 ((a)~(b)) 、体外PDT效应 ((c)~(d)) 和体内抗癌效果 ((e)~(i))[95]

    Figure  3.  Detection of intracellular reactive oxygen species (ROS) production ((a)-(b)), in vitro PDT effects ((c)-(d)) and in vivo anti-cancer effects ((e)-(i)) of g-C3N4–Au NPs for photodynamic therapy[95]

    图  4  二维热氧化黄铁矿纳米片(TOPY NSs)的光热治疗的示意图 (a)、靶成像向效果 (b) 和作为PA成像剂效果评估 (c)[101]

    Figure  4.  Schematic diagram of photothermal therapy (a) and the evaluation of the target imaging effect (b) and the effect used as a PA imaging agent (c) of two-dimensional thermal oxidized pyrite nanosheets (TOPY-PEG NSs)[101]

    GSH—Glutathione; GSSG—Ooxidized glutathione; PEG—Polyethylene glycol; NMP—N-methylpyrrolidone)

    图  5  替拉帕嗪/纳米粒子@卟啉金属-有机骨架材料(TPZ/UCSs)异质结[111]结构示意图及其在近红外光(NIR)激发PDT和低氧活化化疗联合免疫治疗肿瘤中的应用(a);NIR光触发组合疗法的示意图 (b);经过不同处理的CT26荷瘤小鼠中原发性肿瘤 (c) 和远处肿瘤 (d) 的生长曲线;顺铂-AuNRs@SiO2-Avastin@PEI/AE105 NPs[113]化学-光热宫颈癌联合治疗临床诊断设计示意图 (e) 及其光热效果 ((f)~(g)),肿瘤治疗效果图 ((h)~(i)) ;HPT-DOX[115]制备与超声动力及化疗联合抗癌机制的示意图 (j)、超声动力效果 (k)、高分辨TEM图像与元素映射 (l)

    Figure  5.  Schematic diagram of the structure and the application in NIR-stimulated PDT and hypoxic-activated chemotherapy combined immunotherapy (a) of tirapazamine (TPZ/UCSs) heterojunction[111]; schematic diagram (b) of NIR light-triggered combination therapy of TPZ/UCSs heterojunction; growth curves of primary tumors (c) and distant tumors (d) of CT26 tumor-bearing mice under different treatments; schematic diagram (e) of the clinical diagnosis design of the photothermal-chemotherapy combined cervical cancer treatment, the photothermal effect ((f)-(g)) andthe anticancer effect ((h)-(i)) of cisplatin-AuNRs@SiO2-Avastin@PEI/AE105 NPs[113]; schematic diagram (j) of the preparation process and the sonodynamic-chemotherapy combined anticancer mechanism and the graph of ultrasonic dynamic effect (k), the high-resolution TEM image and element mapping (l) of HPT-DOX [115]

    图  6  2D CONs异质结的体内肿瘤治疗及光热疗法(PTT)和I型光动力疗法(PDT)生成机制示意图 (a)、Live/Dead荧光染色图 (b)[117];BiOI@Bi2S3的异质结纳米颗粒放射/光动力/光热治疗效率增强原理示意图 (c)、肿瘤形貌及H&E染色 (d)、体内PA成像图 (e)[116]

    Figure  6.  Schematic illustration ofthe in vivo tumor therapy and the generation mechanism of photothermal therapy (PTT) and type I photodynamic therapy (PDT) (a) , live/Dead fluorescence staining diagram of 2D CON (b)[117]; Schematic diagram of RF/photodynamic/photothermal treatment efficiency enhancement principle (c) and the graph of tumor morphology and H&E staining (d) and in vivo PA imaging of BiOI@Bi2S3 heterojunction nanoparticles (e)[116]

    COF—Covalent organic framework; CONs—Covalent organic nanosheets; HHTP—2,3,6,7,10,11-hexahydroxytriphenylene; Por—5,15-bis(4-boronophenyl)-porphyrin; PA—Photoacoustic; ROS—Reactive oxygen species; TP-Por—Triphenylene-porphyrin; BSA—Bovine serum albumin; SHNPs—Semiconductor heterojunction nanoparticles; RT—Radiotherapy; CT—Computed tomography; TAA—Thioacetamide

    图  7  BiOI/BiOIO3纳米复合材料[94]体内电子计算机断层扫描(CT)成像图 (a)、肿瘤治疗效果 ((b)~(d))、抗肿瘤机制示意图 (e);CeVO4/Au NCs[131]制备与近红外(NIR)光介导的PTT和PDT肿瘤成像与治疗示意图 (f)、TEM图像 (g)、HR-TEM图像(h) 、EDS元素图 (i)

    Figure  7.  In vivo computed tomography (CT) imaging (a) , the graph of tumor treatment effects ((b)-(d)) and schematic representation of the antitumor mechanism of BiOI/BiOIO3 nanocomposite (e)[94]; lmatic representation of the preparation and near-infrared (NIR) light-mediated photothermal-photodynamic combined imaging and treatment of tumors (f) , TEM image (g) , HR-TEM image (h) and EDS elemental diagrams (i) of CeVO4/Au NCs[131]

    图  8  多模态诊疗一体的应用与机制 (a)[127];Bi-Bi2S3/BSA&FA NPs[124]应用于多模态成像(CT/PA)引导的肿瘤光热治疗机制示意图 (b)、促进CT成像的效果 (c)、成像引导的光热疗法效果 (d);CSA NPs[127]靶向效果(e)、促进CT成像的效果 ((f)~(g));用于多模态成像的放射-光热协同肿瘤治疗机制示意图 (h)

    Figure  8.  Application and mechanism of multimodal therapy in one (a)[127]; schematic diagram of the mechanism of radiation-photothermal therapy applied to multimodal imaging (CT/PA)-guided tumor therapy (b) , effect of promoting CT imaging (c) and the effect of imaging-guided photothermal therapy (d) of Bi-Bi2S3/BSA&FA NPs[124]; figures of targeting effect (e) , effect of promoting CT imaging ((f)-(g)) and schematic diagram of the mechanism of radiation-photothermal synergistic tumor therapy applied to multimodal imaging (h) of CSA NPs[127]

    表  1  不同异质结材料在肿瘤诊疗一体化领域的研究

    Table  1.   Study of different heterojunction materials in the integration of tumor diagnosis and treatment

    HeterojunctionTreatment methodImaging methodsTimeRef
    BiOI-Bi2S3 RT/PDT/PTT CT/PA 2017 [94]
    Bi2S3-Au PTT CT 2017 [121]
    AuNC/Fe(OH)3 PTT CT/MRI 2018 [122]
    NPs(Ag2S, Ag2Se, UCNP)@ZIF-8@Au Chemo/PTT CT/FL/PA 2018 [123]
    Bi−Bi2S3 PTT CT/PA 2019 [124]
    Bi2Se3/MoSe2/Bi2Se3 Chemo/PDT/PTT CT/PT 2019 [125]
    CeVO4/Ag PDT/PTT PA 2019 [126]
    Cu2−xSe/Au RT/PTT CT/PA/SPECT 2019 [127]
    Fe3O4−Ag2S PTT CT/MRI 2019 [128]
    MoSe2/Bi2Se3 Chemo/PDT/PTT CT/PT 2019 [125]
    NdVO4/Au PDT PA/PT 2019 [129]
    UCNPs@Pd PTT MRI/UCL 2019 [130]
    CeVO4/Au PDT/PTT PA/PT 2020 [131]
    Co3S4@N-doped carbon Chemo PDT/PTT MRI/PT 2020 [132]
    FeTiO3@Fe2O3 CDT/PDT/PTT FL/PT 2020 [133]
    Fe2O3-FeS2 CDT/PDT/PTT PA/PT 2020 [101]
    Se/Au/Fe−EpC RT CT/MRI/PA 2020 [134]
    Notes: PA—Photoacoustce; MRI—Magnetic resonance imaging; FL—Fluorescence; SPECT—Single photon emission computed tomography; UCL—Up-conversion luminescence.
    下载: 导出CSV
  • [1] BRAY F, JEMAL A, GREY N, et al. Global cancer transitions according to the human development index (2008-2030): A population-based study[J]. Lancet Oncology,2012,13(8):790-801. doi: 10.1016/S1470-2045(12)70211-5
    [2] LUO L H, ZHU C Q, YIN H, et al. Laser immunotherapy in combination with perdurable PD-1 blocking for the treatment of metastatic tumors[J]. ACS Nano,2018,12(8):7647-7662. doi: 10.1021/acsnano.8b00204
    [3] LI T T, SHI S X, GOEL S, et al. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer[J]. Acta Biomaterialia,2019,89:1-13. doi: 10.1016/j.actbio.2019.02.031
    [4] XUE J W, ZHAO Z K, ZHANG L, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nature Nanotechnology,2017,12(7):692. doi: 10.1038/nnano.2017.54
    [5] BARNETT G C, WEST C M L, DUNNING A M, et al. Normal tissue reactions to radiotherapy: Towards tailoring treatment dose by genotype[J]. Nature Reviews Cancer,2009,9(2):134-142. doi: 10.1038/nrc2587
    [6] HUO D, LIU S, ZHANG C, et al. Hypoxia-targeting, tumor microenvironment responsive nanocluster bomb for radical enhanced radiotherapy[J]. ACS Nano,2017,11(10):10159-10174. doi: 10.1021/acsnano.7b04737
    [7] JIA Y H, YUAN M, YUAN H D, et al. Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery[J]. International Journal of Nanomedicine,2012,7:1697-1708. doi: 10.2217/nnm.12.65
    [8] SHEN X, LI T T, CHEN Z Y, et al. Luminescent/magnetic PLGA-based hybrid nanocomposites: A smart nanocarrier system for targeted codelivery and dual-modality imaging in cancer theranostics[J]. International Journal of Nanomedicine,2017,12:4299-4322. doi: 10.2147/IJN.S136766
    [9] BARKER H E, PAGET J T E, KHAN A A, et al. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence[J]. Nature Reviews Cancer,2015,15(7):409-425. doi: 10.1038/nrc3958
    [10] YANG H, ZHANG C C, LI T T, et al. Rational design of multifunctional polymeric micelles with stimuli-responsive for imaging-guided combination cancer therapy[J]. Journal of Biomedical Nanotechnology,2017,13(10):1221-1234. doi: 10.1166/jbn.2017.2444
    [11] YANG H, SHEN X, YAN J, et al. Charge-reversal-functionalized PLGA nanobubbles as theranostic agents for ultrasonic-imaging-guided combination therapy[J]. Biomaterials Science,2018,6(9):2426-2439. doi: 10.1039/C8BM00419F
    [12] DANIEL M C, ASTRUC D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews,2004,104(1):293-346. doi: 10.1021/cr030698+
    [13] HUANG X H, JAIN P K, EL-SAYED I H, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles[J]. Lasers in Medical Science,2008,23(3):217-228. doi: 10.1007/s10103-007-0470-x
    [14] KIM H, CHUNG K, LEE S, et al. Near-infrared light-responsive nanomaterials for cancer theranostics[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology,2016,8(1):23-45. doi: 10.1002/wnan.1347
    [15] SHI J, VOTRUBA A R, FAROKHZAD O C, et al. Nanotechnology in drug delivery and tissue engineering: From discovery to applications[J]. Nano Letters,2010,10(9):3223-3230. doi: 10.1021/nl102184c
    [16] GAO L, FEI J, ZHAO J, et al. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro[J]. ACS Nano,2012,6(9):8030-8040. doi: 10.1021/nn302634m
    [17] YANG W, GUO W, LE W, et al. Albumin-bioinspired Gd: CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy[J]. ACS Nano,2016,10(11):10245-10257. doi: 10.1021/acsnano.6b05760
    [18] LIU K, XING R, ZOU Q, et al. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy[J]. Angewandte Chemie-International Edition,2016,55(9):3036-3039. doi: 10.1002/anie.201509810
    [19] SHEN Y, SHUHENDLER A J, YE D, et al. Two-photon excitation nanoparticles for photodynamic therapyt[J]. Chemical Society Reviews,2016,45(24):6725-6741. doi: 10.1039/C6CS00442C
    [20] CASTANO A P, MROZ P, HAMBLIN M R. Photodynamic therapy and anti-tumour immunity[J]. Nature Reviews Cancer,2006,6(7):535-545. doi: 10.1038/nrc1894
    [21] TIAN J, ZHOU J, SHEN Z, et al. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics[J]. Chemical Science,2015,6(10):5969-5977. doi: 10.1039/C5SC01721A
    [22] BRANNON-PEPPAS L, BLANCHETTE J O. Nanoparticle and targeted systems for cancer therapy[J]. Advanced Drug Delivery Reviews,2012,64:206-212. doi: 10.1016/j.addr.2012.09.033
    [23] VEISEH O, KIEVIT F M, ELLENBOGEN R G, et al. Cancer cell invasion: Treatment and monitoring opportunities in nanomedicine[J]. Advanced Drug Delivery Reviews,2011,63(8):582-596. doi: 10.1016/j.addr.2011.01.010
    [24] GU Z, ZHU S, YAN L, et al. Graphene-based smart platforms for combined cancer therapy[J]. Advanced Materials,2019,31(9):1800662. doi: 10.1002/adma.201800662
    [25] ZHANG X, LUO L, LI L, et al. Trimodal synergistic antitumor drug delivery system based on graphene oxide[J]. Nanomedicine-Nanotechnology Biology and Medicine,2019,15(1):142-152. doi: 10.1016/j.nano.2018.09.008
    [26] LIU J, DU P, LIU T, et al. A black phosphorus/manganese dioxide nanoplatform: Oxygen self-supply monitoring, photodynamic therapy enhancement and feedback[J]. Biomaterials,2019,192:179-188. doi: 10.1016/j.biomaterials.2018.10.018
    [27] HUANG H, HE L, ZHOU W, et al. Stable black phosphorus/Bi2O3 heterostructures for synergistic cancer radiotherapy[J]. Biomaterials,2018,171:12-22. doi: 10.1016/j.biomaterials.2018.04.022
    [28] MURUGAN C, MURUGAN N, SUNDRAMOORTHY A K, et al. Nanoceria decorated flower-like molybdenum sulphide nanoflakes: An efficient nanozyme for tumour selective ROS generation and photo thermal therapy[J]. Chemical Communications,2019,55(55):8017-8020. doi: 10.1039/C9CC03763B
    [29] ASHRAF W, FATIMA T, SRIVASTAVA K, et al. Superior photocatalytic activity of tungsten disulfide nanostructures: role of morphology and defects[J]. Applied Nanoscience,2019,9(7):1515-1529. doi: 10.1007/s13204-019-00951-4
    [30] WANG Q, DAI Y, XU J, et al. All-in-one phototheranostics: Single laser triggers nir-ii fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy[J]. Advanced Functional Materials,2019,29(31):1901480. doi: 10.1002/adfm.201901480
    [31] DAI Y, SU J, WU K, et al. Multifunctional thermosensitive liposomes based on natural phase-change material: Near-infrared light-triggered drug release and multimodal imaging-guided cancer combination therapy[J]. ACS Applied Materials & Interfaces,2019,11(11):10540-10553.
    [32] MENG Z, ZHOU X, XU J, et al. Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations[J]. Advanced Materials,2019,31(24):1900927.
    [33] BABAYEVSKA N, FLORCZAK P, WOZNIAK-BUDYCH M, et al. Functionalized multimodal ZnO@Gd2O3 nanosystems to use as perspective contrast agent for MRI[J]. Applied Surface Science,2017,404:129-137. doi: 10.1016/j.apsusc.2017.01.274
    [34] SANTANA C P, MANSUR A A P, CARVALHO S M, et al. Bi-functional quantum dot-polysaccharide-antibody immunoconjugates for bioimaging and killing brain cancer cells in vitro[J]. Materials Letters,2019,252:333-337. doi: 10.1016/j.matlet.2019.06.022
    [35] GONG C, SUN S, ZHANG Y, et al. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications[J]. Nanoscale,2019,11(10):4147-4182. doi: 10.1039/C9NR00218A
    [36] TAN C, ZHANG H. Two-dimensional transition metal dichalcogenide nanosheet-based composites[J]. Chemical Society Reviews,2015,44(9):2713-2731. doi: 10.1039/C4CS00182F
    [37] LU F, WANG J, YANG L, et al. A facile one-pot synthesis of colloidal stable, monodisperse, highly PEGylated CuS@mSiO(2) nanocomposites for the combination of photothermal therapy and chemotherapy[J]. Chemical Communications,2015,51(46):9447-9450. doi: 10.1039/C5CC01725D
    [38] YE X, SHI H, HE X, et al. Gold nanorod-seeded synthesis of Au@Ag/Au nanospheres with broad and intense near-infrared absorption for photothermal cancer therapy[J]. Journal of Materials Chemistry B,2014,2(23):3667-3673. doi: 10.1039/C4TB00202D
    [39] SONG G, WANG Q, WANG Y, et al. A low-toxic multifunctional nanoplatform based on Cu9S5@mSiO(2) core-shell nanocomposites: Combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment[J]. Advanced Functional Materials,2013,23(35):4281-4292. doi: 10.1002/adfm.201203317
    [40] ZHANG H, LIU Z, KANG X, et al. Asymmetric AgPd-AuNR heterostructure with enhanced photothermal performance and SERS activity[J]. Nanoscale,2016,8(4):2242-2248. doi: 10.1039/C5NR07333B
    [41] LIU X, ZHANG X, ZHU M, et al. PEGylated Au@Pt nanodendrites as novel theranostic agents for computed tomography imaging and photothermal/radiation synergistic therapy[J]. ACS Applied Materials & Interfaces,2017,9(1):279-285.
    [42] SUN Y. Interfaced heterogeneous nanodimers[J]. National Science Review,2015,2(3):329-348. doi: 10.1093/nsr/nwv037
    [43] JIANG Q, ZENG W, ZHANG C, et al. Broadband absorption and enhanced photothermal conversion property of octopod-like Ag@Ag2S core@shell structures with gradually varying shell thickness[J]. Scientific Reports,2017,7:17782. doi: 10.1038/s41598-017-18220-1
    [44] ZHU D, LIU M, LIU X, et al. Au-Cu2-xSe heterogeneous nanocrystals for efficient photothermal heating for cancer therapy[J]. Journal of Materials Chemistry B,2017,5(25):4934-4942. doi: 10.1039/C7TB01004D
    [45] ZHANG B, SHAN Y, CHEN K. A facile approach to fabricate of photothermal functional Fe3O4@CuS microspheres[J]. Materials Chemistry and Physics,2017,193:82-88. doi: 10.1016/j.matchemphys.2017.01.079
    [46] ZHANG J, LIU G, HE F, et al. Au@Cu7S4 yolk-shell nanoparticles as a 980 nm laser-driven photothermal agent with a heat conversion efficiency of 63%[J]. Rsc Advances,2015,5(107):87903-87907. doi: 10.1039/C5RA19055J
    [47] CHEN H, SHAO L, MING T, et al. Understanding the photothermal conversion efficiency of gold nanocrystals[J]. Small,2010,6(20):2272-2280. doi: 10.1002/smll.201001109
    [48] ZHU G, BAO C, LIU Y, et al. Self-regulated route to ternary hybrid nanocrystals of Ag-Ag2S-CdS with near-infrared photoluminescence and enhanced photothermal conversion[J]. Nanoscale,2014,6(19):11147-11156. doi: 10.1039/C4NR03001J
    [49] VINODGOPAL K, KAMAT P V. Enhanced rates of photocatalytic degradation of an azo-dye using SnO2/TiO2 coupled semiconductor thin-films[J]. Environmental Science & Technology,1995,29(3):841-845.
    [50] 钱学旻, 刘辉彪, 李玉良. 自组装低维无机/有机异质结纳米材料[J]. 科学通报, 2014, 59(1):2686-2697.

    QIAN Xuemin, LIU Huibiao, LI Yuliang. Self-assembly low dimensional inorganic/organic heterojunction nanomaterials[J]. Chinese Science Bulletin,2014,59(1):2686-2697(in Chinese).
    [51] LOW J, YU J, JARONIEC M, et al. Heterojunction photocatalysts[J]. Advanced Materials,2017,29(20):1601694. doi: 10.1002/adma.201601694
    [52] WANG H, ZHANG L, CHEN Z, et al. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances[J]. Chemical Society Reviews, 2014, 43(15): 5234-5244.
    [53] 谢小银, 刘冠辰, 李祥, 等. 有机异质结太阳能电池研究进展[J]. 吉林化工学院学报, 2013, 30(5):1-4. doi: 10.3969/j.issn.1007-2853.2013.05.001

    XIE Xiaoyin, LIU Guanchen, LI Xiang, et al. Research progress on organic bulk heterojunction photovoltaic[J]. Journal of Jilin Institute of Chemical Technology,2013,30(5):1-4(in Chinese). doi: 10.3969/j.issn.1007-2853.2013.05.001
    [54] ZHOU H, QU Y, ZEID T, et al. Towards highly efficient photocatalysts using semiconductor nanoarchitectures[J]. Energy & Environmental Science,2012,5(5):6732-6743.
    [55] HYUN J K, ZHANG S, LAUHON L J. Nanowire heterostructures[J]. Annual Review of Materials Research, 2013, 43: 451-479.
    [56] LI K, GAO S, WANG Q, et al. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation[J]. ACS Applied Materials & Interfaces,2015,7(17):9023-9030.
    [57] HONG S J, LEE S, JANG J S, et al. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation[J]. Energy & Environmental Science,2011,4(5):1781-1787.
    [58] PAN C, XU J, WANG Y, et al. Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly[J]. Advanced Functional Materials,2012,22(7):1518-1524. doi: 10.1002/adfm.201102306
    [59] CHEN W, LIU T Y, HUANG T, et al. A novel yet simple strategy to fabricate visible light responsive C, N-TiO2/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation[J]. RSC Advances,2015,5(122):101214-101220. doi: 10.1039/C5RA18302B
    [60] ONG W J, PUTRI L K, TAN L L, et al. Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide[J]. Applied Catalysis B-Environmental,2016,180:530-543. doi: 10.1016/j.apcatb.2015.06.053
    [61] YUAN Y-P, RUAN L-W, BARBER J, et al. Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion[J]. Energy & Environmental Science,2014,7(12):3934-3951.
    [62] CHEN S, ZHANG S, LIU W, et al. Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2[J]. Journal of Hazardous Materials,2008,155(1-2):320-326. doi: 10.1016/j.jhazmat.2007.11.063
    [63] YU J, WANG W, CHENG B. Synthesis and enhanced photocatalytic activity of a hierarchical porous flowerlike p-n junction NiO/TiO2 photocatalyst[J]. Chemistry-An Asian Journal,2010,5(12):2499-2506. doi: 10.1002/asia.201000550
    [64] ZHANG J, QIAO S Z, QI L, et al. Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H-2-production activity[J]. Physical Chemistry Chemical Physics,2013,15(29):12088-12094. doi: 10.1039/c3cp50734c
    [65] ZHANG J, ZHU Z, FENG X. Construction of two-dimensional MoS2/CdS p-n nanohybrids for highly efficient photocatalytic hydrogen evolution[J]. Chemistry-A European Journal,2014,20(34):10632-10635. doi: 10.1002/chem.201402522
    [66] YU J, LOW J, XIAO W, et al. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets[J]. Journal of the American Chemical Society,2014,136(25):8839-8842. doi: 10.1021/ja5044787
    [67] ONG W J, TAN L L, CHAI S P, et al. Highly reactive {001} facets of TiO2-based composites: Synthesis, formation mechanism and characterization[J]. Nanoscale,2014,6(4):1946-2008. doi: 10.1039/c3nr04655a
    [68] ZHOU K, LI Y. Catalysis based on nanocrystals with well-defined facets[J]. Angewandte Chemie-International Edition,2012,51(3):602-613. doi: 10.1002/anie.201102619
    [69] LIU C, HAN X, XIE S, et al. Enhancing the photocatalytic activity of anatase TiO2 by improving the specific facet-induced spontaneous separation of photogenerated electrons and holes[J]. Chemistry-An Asian Journal,2013,8(1):282-289. doi: 10.1002/asia.201200886
    [70] GAO S, WANG W, NI Y, et al. Facet-dependent photocatalytic mechanisms of anatase TiO2: A new sight on the self-adjusted surface heterojunction[J]. Journal of Alloys and Compounds,2015,647:981-988. doi: 10.1016/j.jallcom.2015.06.204
    [71] LI R, ZHANG F, WANG D, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4[J]. Nature Communications,2013,4:1432. doi: 10.1038/ncomms2401
    [72] ZHOU P, YU J, JARONIEC M. All-solid-state z-scheme photocatalytic systems[J]. Advanced Materials,2014,26(29):4920-4935. doi: 10.1002/adma.201400288
    [73] BARD A J. Photoelectrochemistry and heterogeneous photocatalysis at semiconductors[J]. Journal of Photochemistry,1979,10(1):59-75. doi: 10.1016/0047-2670(79)80037-4
    [74] WEI Y, JIAO J, ZHAO Z, et al. Fabrication of inverse opal TiO2-supported Au@CdS core-shell nanoparticles for efficient photocatalytic CO2 conversion[J]. Applied Catalysis B-Environmental,2015,179:422-432. doi: 10.1016/j.apcatb.2015.05.041
    [75] YU J, WANG S, LOW J, et al. Enhanced photocatalytic performance of direct z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics,2013,15(39):16883-16890. doi: 10.1039/c3cp53131g
    [76] CHEN X, HUANG X, YI Z. Enhanced ethylene photodegradation performance of g-C3N4-Ag3PO4 composites with direct z-scheme configuration[J]. Chemistry A European Journal,2014,20(52):17590-17596. doi: 10.1002/chem.201404284
    [77] ZHANG J, HU Y, JIANG X, et al. Design of a direct z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity[J]. Journal of Hazardous Materials,2014,280:713-722. doi: 10.1016/j.jhazmat.2014.08.055
    [78] KUDO A, KATO H, TSUJI I. Strategies for the development of visible-light-driven photocatalysts for water splitting[J]. Chemistry Letters,2004,33(12):1534-1539. doi: 10.1246/cl.2004.1534
    [79] KATSUMATA H, TACHI Y, SUZUKI T, et al. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts[J]. RSC Advances,2014,4(41):21405-21409. doi: 10.1039/C4RA02511C
    [80] XIA D, LI Y, HUANG G, et al. Visible-light-driven inactivation of escherichia coli K-12 over thermal treated natural pyrrhotite[J]. Applied Catalysis B-Environmental,2015,176:749-756.
    [81] REN Y, ZENG D, ONG W J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review[J]. Chinese Journal of Catalysis,2019,40(3):289-319. doi: 10.1016/S1872-2067(19)63293-6
    [82] SHEN R C, XIE J, GUO P Y, et al. Bridging the g-C3N4 nanosheets and robust CuS cocatalysts by metallic acetylene black interface mediators for active and durable photocatalytic H-2 production[J]. ACS Applied Energy Materials,2018,1(5):2232-2241. doi: 10.1021/acsaem.8b00311
    [83] LU L L, XU X X, AN K L, et al. Coordination polymer derived NiS@g-C3N4 composite photocatalyst for sulfur vacancy and photothermal effect synergistic enhanced H-2 production[J]. ACS Sustainable Chemistry & Engineering,2018,6(9):11869-11876.
    [84] WANG X, KAJIYAMA S, IINUMA H, et al. Pseudocapacitance of mxene nanosheets for high-power sodium-ion hybrid capacitors[J]. Nature Communications,2015,6:6544. doi: 10.1038/ncomms7544
    [85] KWATRA D, VENUGOPAL A, ANANT S. Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer[J]. Translational Cancer Research,2013,2(4):330-342.
    [86] SADEGHI M, ENFERADI M, SHIRAZI A. External and internal radiation therapy: Past and future directions[J]. Journal of Cancer Research and Therapeutics,2010,6(3):239-248. doi: 10.4103/0973-1482.73324
    [87] JOHNSTONE C D, LAFONTAINE R, POIRIER Y, et al. Modeling a superficial radiotherapy x-ray source for relative dose calculations[J]. Journal of Applied Clinical Medical Physics,2015,16(3):118-130. doi: 10.1120/jacmp.v16i3.5162
    [88] PHILLIPS W T, BAO A, BRENNER A J, et al. Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles[J]. Advanced Drug Delivery Reviews,2014,76:39-59. doi: 10.1016/j.addr.2014.07.001
    [89] LORD C J, ASHWORTH A. The DNA damage response and cancer therapy[J]. Nature,2012,481(7381):287-294. doi: 10.1038/nature10760
    [90] JIANG W, LI Q, XIAO L, et al. Hierarchical multiplexing nanodroplets for imaging-guided cancer radiotherapy via DNA damage enhancement and concomitant DNA repair prevention[J]. ACS Nano,2018,12(6):5684-5698. doi: 10.1021/acsnano.8b01508
    [91] WANG X, ZHANG C, DU J, et al. Enhanced generation of non-oxygen dependent free radicals by schottky-type heterostructures of Au-Bi2S3 nanoparticles via x-ray-induced catalytic reaction for radiosensitization[J]. ACS Nano,2019,13(5):5947-5958. doi: 10.1021/acsnano.9b01818
    [92] DOUGHERTY T J, KAUFMAN J E, GOLDFARB A, et al. Photoradiation therapy for treatment of malignant-tumors[J]. Cancer Research,1978,38(8):2628-2635.
    [93] 路君. 用于光动力学治疗的纳米金属有机框架材料的制备与应用研究[D]. 济南: 山东师范大学, 2018.

    LU Jun. Preparation and application of nano-metal organic frame materials for photodynamic therapy[D]. Ji'nan: Shandong Normal University, 2018(in Chinese).
    [94] ZHEN W, LIU Y, JIA X, et al. Reductive surfactant-assisted one-step fabrication of a BiOI/BiOIO3 heterojunction biophotocatalyst for enhanced photodynamic theranostics overcoming tumor hypoxia[J]. Nanoscale Horizons,2019,4(3):720-726. doi: 10.1039/C8NH00440D
    [95] DAI J, SONG J, QIU Y, et al. Gold nanoparticle-decorated g-C3N4 nanosheets for controlled generation of reactive oxygen species upon 670 nm laser illumination[J]. ACS Applied Materials & Interfaces,2019,11(11):10589-10596.
    [96] CHENG Y, KONG X, CHANG Y, et al. Spatiotemporally synchronous oxygen self-supply and reactive oxygen species production on z-scheme heterostructures for hypoxic tumor therapy[J]. Advanced Materials,2020,32(11):1908109. doi: 10.1002/adma.201908109
    [97] ABADEER N S, MURPHY C J. Recent progress in cancer thermal therapy using gold nanoparticles[J]. Journal of Physical Chemistry C,2016,120(9):4691-4716. doi: 10.1021/acs.jpcc.5b11232
    [98] GAI S, YANG G, YANG P, et al. Recent advances in functional nanomaterials for light-triggered cancer therapy[J]. Nano Today,2018,19:146-187. doi: 10.1016/j.nantod.2018.02.010
    [99] CHEN S, XING C, HUANG D, et al. Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions[J]. Science Advances,2020,6(15):6825. doi: 10.1126/sciadv.aay6825
    [100] GENG B, QIN H, SHEN W, et al. Carbon dot/WS2 heterojunctions for NIR-II enhanced photothermal therapy of osteosarcoma and bone regeneration[J]. Chemical Engineering Journal,2020,383:123102. doi: 10.1016/j.cej.2019.123102
    [101] PAN C, OU M, CHENG Q, et al. Z-scheme heterojunction functionalized pyrite nanosheets for modulating tumor microenvironment and strengthening photo/chemodynamic therapeutic effects[J]. Advanced Functional Materials,2020,30(3):1906466. doi: 10.1002/adfm.201906466
    [102] WONG E, GIANDOMENICO C M. Current status of platinum-based antitumor drugs[J]. Chemical Reviews,1999,99(9):2451-2466. doi: 10.1021/cr980420v
    [103] CHOUDHURY H, PANDEY M, YIN T H, et al. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology[J]. Materials Science & Engineering C-Materials for Biological Applications,2019,101:596-613.
    [104] KIBRIA G, HATAKEYAMA H, HARASHIMA H. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system[J]. Archives of Pharmacal Research,2014,37(1):4-15. doi: 10.1007/s12272-013-0276-2
    [105] SHEWACH D S, KUCHTA R D. Introduction to cancer chemotherapeutics[J]. Chemical Reviews,2009,109(7):2859-2861. doi: 10.1021/cr900208x
    [106] MANSOORI B, MOHAMMADI A, DAVUDIAN S, et al. The different mechanisms of cancer drug resistance: A brief review[J]. Advanced Pharmaceutical Bulletin,2017,7(3):339-348. doi: 10.15171/apb.2017.041
    [107] JANA A, KIM TRUC N, LI X, et al. Perylene-derived single-component organic nanoparticles with tunable emission: Efficient anticancer drug carriers with real-time monitoring of drug release[J]. ACS Nano,2014,8(6):5939-5952. doi: 10.1021/nn501073x
    [108] MA X, TAO H, YANG K, et al. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging[J]. Nano Research,2012,5(3):199-212. doi: 10.1007/s12274-012-0200-y
    [109] JU E, LI Z, LIU Z, et al. Near-infrared light-triggered drug-delivery vehicle for mitochondria-targeted chemo-photothermal therapy[J]. ACS Applied Materials & Interfaces,2014,6(6):4364-4370.
    [110] WANG X, XU J, YANG D, et al. Fe3O4@MIL-100(Fe)-UCNPs heterojunction photosensitizer: Rational design and application in near infrared light mediated hypoxic tumor therapy[J]. Chemical Engineering Journal,2018,354:1141-1152. doi: 10.1016/j.cej.2018.08.070
    [111] SHAO Y, LIU B, DI Z, et al. Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors[J]. Journal of the American Chemical Society,2020,142(8):3939-3946. doi: 10.1021/jacs.9b12788
    [112] BEHNAMSANI A, MESHKINI A. synthesis and engineering of mesoporous ZnO@HAP heterostructure as a pH-sensitive nano-photosensitizer for chemo-photodynamic therapy of malignant tumor cells[J]. Journal of Drug Delivery Science and Technology,2019,53:101200. doi: 10.1016/j.jddst.2019.101200
    [113] HU X, MANDIKA C, HE L, et al. Construction of urokinase-type plasminogen activator receptor-targeted heterostructures for efficient photothermal chemotherapy against cervical cancer to achieve simultaneous anticancer and antiangiogenesis[J]. ACS Applied Materials & Interfaces,2019,11(43):39688-39705.
    [114] UMEMURA S I, YUMITA N, NISHIGAKI R, et al. Sonochemical activation of hematoporphyrin: A potential modality for cancer treatment[J]. IEEE 1989 Ultrasonics Symposium Proceedings,1989,2:955-960.
    [115] LIANG S, DENG X, XU G, et al. A novel Pt-TiO2 Heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy[J]. Advanced Functional Materials,2020,30(13):1908598. doi: 10.1002/adfm.201908598
    [116] GUO Z, ZHU S, YONG Y, et al. Synthesis of BSA-coated BiOI@Bi2S3 semiconductor heterojunction nanoparticles and their applications for radio/photodynamic/photothermal synergistic therapy of tumor[J]. Advanced Materials,2017,29(44):1704136. doi: 10.1002/adma.201704136
    [117] WANG K, ZHANG Z, LIN L, et al. Covalent organic nanosheets integrated heterojunction with two strategies to overcome hypoxic-tumor photodynamic therapy[J]. Chemistry of Materials,2019,31(9):3313-3323. doi: 10.1021/acs.chemmater.9b00265
    [118] 朱婧. 纳米材料在医学影像上的应用[D]. 苏州: 苏州大学, 2016.

    ZHU Jing. Application of nanomaterials in medical imaging[D]. Suzhou: Soochow University, 2016(in Chinese).
    [119] 龚萍, 杨月婷, 石碧华, 等. 纳米探针在分子影像领域的研究进展[J]. 科学通报, 2013, 58(9):762-776. doi: 10.1360/972012-1727

    GONG Ping, YANG Yueting, SHI Bihua, et al. Progress of the nano probes for molecular imaging[J]. Chinese Science Bulletin,2013,58(9):762-776(in Chinese). doi: 10.1360/972012-1727
    [120] 孟洁, 许海燕. 纳米材料在分子影像学研究中的应用进展[J]. 中国生物医学工程学报, 2011, 30(1):1-5. doi: 10.3969/j.issn.0258-8021.2011.01.01

    MENG Jie, XU Haiyan. Current progress of contrast agents based on nanoparticles technology for molecular imaging[J]. Chinese Journal of Biomedical Engineering,2011,30(1):1-5(in Chinese). doi: 10.3969/j.issn.0258-8021.2011.01.01
    [121] CHENG Y, CHANG Y, FENG Y, et al. Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging[J]. Angewandte Chemie-International Edition,2018,57(1):246-251. doi: 10.1002/anie.201710399
    [122] ZHANG L, ZHANG M, ZHOU L, et al. Dual drug delivery and sequential release by amphiphilic janus nanoparticles for liver cancer theranostics[J]. Biomaterials,2018,181:113-125. doi: 10.1016/j.biomaterials.2018.07.060
    [123] ZHANG H, HAO C, QU A, et al. Heterostructures of MOFs and nanorods for multimodal imaging[J]. Advanced Functional Materials,2018,28(48):1805320. doi: 10.1002/adfm.201805320
    [124] DONG L, ZHANG P, LIU X, et al. Renal clearable Bi-Bi2S3 heterostructure nanoparticles for targeting cancer theranostics[J]. ACS Applied Materials & Interfaces,2019,11(8):7774-7781.
    [125] WANG Y, ZHAO J, CHEN Z, et al. Construct of MoSe2/Bi2Se3 nanoheterostructure: multimodal CT/PT imaging-guided PTT/PDT/chemotherapy for cancer treating[J]. Biomaterials,2019,217:119282. doi: 10.1016/j.biomaterials.2019.119282
    [126] CHANG M, WANG M, CHEN Y, et al. Self-assembled CeVO4/Ag nanohybrid as photoconversion agents with enhanced solar-driven photocatalysis and NIR-responsive photothermal/photodynamic synergistic therapy performance[J]. Nanoscale,2019,11(20):10129-10136. doi: 10.1039/C9NR02412C
    [127] HUANG Q, ZHANG S, ZHANG H, et al. Boosting the radiosensitizing and photothermal performance of Cu2-xSe nanocrystals for synergetic radiophotothermal therapy of orthotopic breast cancer[J]. ACS Nano,2019,13(2):1342-1353.
    [128] LIU D, LAI J, WANG R, et al. Reverse microemulsion synthesis of Fe3O4-Ag2S heteronanocrystals for dual-modal imaging-guided photothermal tumor ablation[J]. ACS Biomaterials Science & Engineering,2019,5(11):6196-6206.
    [129] CHANG M, WANG M, SHU M, et al. Enhanced photoconversion performance of NdVO4/Au nanocrystals for photothermal/photoacoustic imaging guided and near infrared light-triggered anticancer phototherapy[J]. Acta Biomaterialia,2019,99:295-306. doi: 10.1016/j.actbio.2019.08.026
    [130] ZHAO H, ZHAO L, WANG Z, et al. Heterogeneous growth of palladium nanocrystals on upconversion nanoparticles for multimodal imaging and photothermal therapy[J]. Journal of Materials Chemistry B,2019,7(23):3652-3660. doi: 10.1039/C9TB00317G
    [131] WANG J, HU Y, CHEN J, et al. Self-assembled CeVO4/Au heterojunction nanocrystals for photothermal/photoacoustic bimodal imaging-guided phototherapy[J]. RSC Advances,2020,10(5):2581-2588. doi: 10.1039/C9RA09860G
    [132] LV K, LIN H, QU F. Biodegradable hollow Co3S4@N-doped carbon as enhanced PTT/PDT agent for multimodal MR/thermal imaging and synergistic antitumor therapy[J]. Chemical Engineering Journal,2020,392:124555. doi: 10.1016/j.cej.2020.124555
    [133] OU M, PAN C, YU Y, et al. Two-dimensional highly oxidized ilmenite nanosheets equipped with z-scheme heterojunction for regulating tumor microenvironment and enhancing reactive oxygen species generation[J]. Chemical Engineering Journal,2020,390:124524. doi: 10.1016/j.cej.2020.124524
    [134] LIU H, LIN W, HE L, et al. Radiosensitive core/satellite ternary heteronanostructure for multimodal imaging-guided synergistic cancer radiotherapy[J]. Biomaterials,2020,226:119845.
    [135] 张建辉, 陈宁波, 王柏权, 等. 光声显微成像技术的研究进展[J]. 数据采集与处理, 2019, 34(5):771-788.

    ZHANG Jianhui, CHEN Ningbo, WANG Boquan, et al. Advances in photoacoustic microscopy technique[J]. Journal of Data Acquisition and Processing,2019,34(5):771-788(in Chinese).
    [136] 瞿润连, 李婷, 邓鹏翅. 生物体内含磷化合物的核磁共振研究进展[J]. 化学研究与应用, 2018, 30(12):1929-1937. doi: 10.3969/j.issn.1004-1656.2018.12.001

    QU Runlian, LI Ting, DENG Pengchi. NMR study progress in 31P-compounds in biological samples[J]. Chemical Research and Application,2018,30(12):1929-1937(in Chinese). doi: 10.3969/j.issn.1004-1656.2018.12.001
    [137] 吕子祎, 董建荣, 何培忠. 液氙探测技术在医学成像上的研究进展[J]. 生物医学工程研究, 2019, 38(4):488-491.

    LV Ziyi, DONG Jianrong, HE Peizhong. The development and applications of liquid xenon detection technology in medical imaging[J]. Journal of Biomedical Engineering Research,2019,38(4):488-491(in Chinese).
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1211
  • HTML全文浏览量:  495
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-11
  • 录用日期:  2021-01-08
  • 网络出版日期:  2021-01-18
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回