留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新拌超高性能纤维增强混凝土流动性能对其抗压强度的影响

杨简 陈宝春 吴香国 苏家战 黄卿维

杨简, 陈宝春, 吴香国, 等. 新拌超高性能纤维增强混凝土流动性能对其抗压强度的影响[J]. 复合材料学报, 2021, 38(11): 3827-3837. doi: 10.13801/j.cnki.fhclxb.20210115.005
引用本文: 杨简, 陈宝春, 吴香国, 等. 新拌超高性能纤维增强混凝土流动性能对其抗压强度的影响[J]. 复合材料学报, 2021, 38(11): 3827-3837. doi: 10.13801/j.cnki.fhclxb.20210115.005
YANG Jian, CHEN Baochun, WU Xiangguo, et al. Influence of the fresh ultra-high performance fiber reinforced concrete flowability on its compressive strength[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3827-3837. doi: 10.13801/j.cnki.fhclxb.20210115.005
Citation: YANG Jian, CHEN Baochun, WU Xiangguo, et al. Influence of the fresh ultra-high performance fiber reinforced concrete flowability on its compressive strength[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3827-3837. doi: 10.13801/j.cnki.fhclxb.20210115.005

新拌超高性能纤维增强混凝土流动性能对其抗压强度的影响

doi: 10.13801/j.cnki.fhclxb.20210115.005
基金项目: 国家重点研发计划项目(2018YFC0705400);国家自然基金面上项目(51878178)
详细信息
    通讯作者:

    陈宝春,博士,教授,博士生导师,研究方向为超高性能混凝土、钢管混凝土拱桥及无缝桥  E-mail: baochunchen@fzu.edu.cn

  • 中图分类号: TU375

Influence of the fresh ultra-high performance fiber reinforced concrete flowability on its compressive strength

  • 摘要: 钢纤维掺入能提高超高性能纤维增强混凝土(Ultra-high performance fiber reinforced concrete,UHPFRC)的抗压强度,但削弱新拌浆体的流动性能,降低了对抗压强度的增强效果,且影响UHPFRC的工作性能。为研究这种不利影响,以钢纤维体积分数和长径比为变量,进行了A、B两组试验。A组固定水胶比为0.18,不控制流动性能,主要研究钢纤维对流动性能和抗压强度的影响。试验结果表明,新拌UHPFRC流动性能随钢纤维的体积分数、长径比增加而下降;当钢纤维体积率超过一定值(2.00vol%)时,流动性能明显下降,抗压强度增强效果也相应下降。通过X-ray CT扫描发现钢纤维掺入减弱浆体的自密实能力,导致硬化后的基体内部孔隙尺寸增大和孔隙率增加,进而削弱抗压强度。综合考虑钢纤维掺入对抗压强度的正、负效应,提出了抗压强度的半经验预测公式。B组改变水胶比,控制扩展度为240 mm,对比A组研究流动性能控制后,钢纤维体积分数和长径比对抗压强度的影响规律。结果表明,钢纤维体积分数较大时,增大水胶比,保持一定流动性能,能有效提高纤维的增强效果;钢纤维体积分数较小时,在满足流动性能要求的前提下,减小水胶比,可以进一步提高抗压强度。在UHPFRC配合比设计时,应考虑钢纤维对流动性能的不利影响,以提高纤维的增强效应并保证其良好的工作性能。

     

  • 图  1  钢纤维参数对UHPFRC流动性能的影响

    Figure  1.  Effect of steel fiber parameters on flowability of UHPFRC

    图  2  钢纤维参数对UHPFRC抗压强度的影响

    Figure  2.  Effect of steel fiber parameters on compressive strength of UHPFRC

    图  3  C(A) UHPFRC试件X-ray CT扫描结果

    Figure  3.  X-ray CT scanning results of C(A) UHPFRC specimen

    图  4  3.00%S0213/C(A) UHPFRC试件X-ray CT扫描结果

    Figure  4.  X-ray CT scanning results of 3.00%S0213/C(A) UHPFRC specimen

    图  5  B组UHPFRC流动性能

    Figure  5.  Flowability of group B UHPFRC

    图  6  A、B组UHPFRC抗压强度对比

    Figure  6.  Comparison of compressive strength between group A and group B UHPFRC

    表  1  钢纤维的命名及其基本信息

    Table  1.   Naming and basic information of steel fiber

    NumberDiameter/mmLength/mmAspect ratioTensile strength/MPaElastic modulus/GPa
    S0220 0.2 20 100 2850 210
    S0213 0.2 13 65 2850 210
    S0313 0.3 13 43 2850 210
    Notes: Sijkl—Steel fiber; ij—Diameter of fiber; kl—Length of the fiber.
    下载: 导出CSV

    表  2  基体配合比

    Table  2.   Matrix mix Mass ratio

    Binder
    AggregateSuperplasticizer
    CementSilica
    fume
    40-70 mesh
    (0.212-0.428 mm)
    20-40 mesh
    (0.428-0.850 mm)
    10-20 mesh
    (0.850-1.700 mm)
    400 mesh
    (0.038 mm)
    1.0 0.3 0.14 0.41 0.53 0.09 0.025
    下载: 导出CSV

    表  3  A组和B组试验的钢纤维和水胶比方案

    Table  3.   Steel fiber and water-to-binder ratio schemes of group A and group B tests

    Steel fiber volume fraction/vol%Water-binder
    ratio of group A
    Water-binder
    ratio of group B
    S0313S0213S0220
    0.00 0.00 0.00 0.18 0.16
    0.25 0.25 0.25 0.17
    0.50 0.50 0.50 0.17
    1.00 1.00 1.00 0.18
    1.50 1.50 1.50 0.19
    2.00 2.00 2.00 0.19
    2.50 2.50 2.50 0.20
    3.00 3.00 3.00 0.21
    下载: 导出CSV

    表  4  A组UHPFRC试件的试验结果

    Table  4.   Test results of group A UHPFRC specimens

    Fiber volume
    fraction/vol%
    Expansion degree/mmCompressive strength/MPa
    S0313/C(A)S0213/C(A)S0220/C(A)S0313/C(A)S0213/C(A)S0220/C(A)
    0.00 300 - - 135.2 - -
    0.25 278 279 273 135.0 137.6 140.1
    0.50 268 270 265 137.4 138.3 145.3
    1.00 250 245 243 139.7 145.0 157.8
    1.50 241 238 235 149.2 152.8 165.2
    2.00 239 235 233 157.3 162.6 174.3
    2.50 230 227 225 156.0 164.5 177.8
    3.00 219 210 202 158.1 168.7 182.2
    下载: 导出CSV

    表  5  B组UHPFRC试件的试验结果

    Table  5.   Test results of group B UHPFRC specimen

    Steel fiber
    volume fraction/vol%
    Water-binder ratioExpansion degree/mmCompressive strength/MPa
    S0313/C(B)S0213/C(B)S0220/C(B)S0313/C(B)S0213/C(B)S0220/C(B)
    0.00 0.16 241 - - 143.5 - -
    0.25 0.17 244 246 243 142.0 143.0 145.1
    0.50 0.17 239 238 236 142.6 146.6 149.3
    1.00 0.18 241 240 246 140.3 144.2 155.7
    1.50 0.19 240 237 239 147.9 151.3 161.8
    2.00 0.19 238 235 236 153.8 156.6 168.0
    2.50 0.20 236 241 237 161.4 167.7 180.5
    3.00 0.21 246 241 240 164.2 173.1 188.2
    下载: 导出CSV
  • [1] 陈宝春, 韦建刚, 苏家战, 等. 超高性能混凝土(UHPFRC)应用进展[J]. 建筑科学与工程学报, 2019, 36(2):10-20. doi: 10.3969/j.issn.1673-2049.2019.02.003

    CHEN Baochun, WEI Jiangang, SU Jiazhan, et al. State-of-the-art progress on application of ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering,2019,36(2):10-20(in Chinese). doi: 10.3969/j.issn.1673-2049.2019.02.003
    [2] 陈宝春, 林毅焌, 杨简, 等. 超高性能纤维增强混凝土中纤维作用综述[J]. 福州大学学报自然科学版, 2020, 48(1):58-68.

    CHEN Baochun, LIN Yijun, YANG Jian, et al. Review on fiber function in ultra-high performance fiber reinforced concrete[J]. Journal of Fuzhou University(Natural Science Edition),2020,48(1):58-68(in Chinese).
    [3] 史才军, 何稳, 吴泽媚, 等. 纤维对UHPFRC力学性能的影响研究进展[J]. 硅酸盐通报, 2015, 34(8):2227-2247.

    SHI Caijun, HE Wen, WU Zhimei, et al. Influence of fibers on mechanical properties of UHPC[J]. Bulletin of the Chinese Ceramic Society,2015,34(8):2227-2247(in Chinese).
    [4] MENG Weina, KHAYAT K. H. Effect of hybrid fibers on fresh properties, mechanical properties, and autogenous shrinkage of cost-effective UHPFRC[J]. Journal of Materials in Civil Engineering,2018,30(4):1-8.
    [5] YOO D Y, KIM S, PARK G J, et al. Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites[J]. Composite Structures,2017,174(8):375-388.
    [6] THARUN M, SENTHIL KUMAR G. Compressive and flexural behavior of ultra high performance concrete with hybrid steel fiber[J]. Journal of Industrial Pollution Control,2017,33(S3):1364-1369.
    [7] HANNAWI K, BIAN H, PRINCE-AGBODJAN W, et al. Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes[J]. Composites Part B: Engineering,2016,86(2):214-220.
    [8] WU Zemei, SHI Caijun, HE Wen, et al. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete[J]. Construction and Building Materials,2016,103:8-14. doi: 10.1016/j.conbuildmat.2015.11.028
    [9] 梁咏宁, 陈宝春, 季韬, 等. 砂胶比、水胶比和钢纤维掺量对RPC性能的影响[J]. 福州大学学报自然科学版, 2011(5):748-753.

    LIANG Yongning, CHEN Baochun, JI Tao, et al. Effects of sand-binder ratio, water-binder ratio and volume percentage of steel fiber on the performance of RPC[J]. Journal of Fuzhou University (Natural Science Edition),2011(5):748-753(in Chinese).
    [10] 徐魏魏, 刘中宪, 赵永娇, 等. 钢纤维超高性能混凝土单轴受压试验研究[J]. 工业建筑, 2016(12):104-109.

    XU Weiwei, LIU Zhongxian, ZHAO Yongjiao, et al. Experimental research on the uniaxial compression of steel fiber reinforced ultra-high performance concrete[J]. Industrial Construction,2016(12):104-109(in Chinese).
    [11] MARTINIE L, ROSSI P, ROUSSEL N. Rheology of fiber reinforced cementitious materials: classification and prediction[J]. Cement and Concrete Research,2010,40(2):226-234. doi: 10.1016/j.cemconres.2009.08.032
    [12] LE HOANG A, FEHLING E. Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultrahigh performance concrete[J]. Construction and Building Materials,2017,153:790-806. doi: 10.1016/j.conbuildmat.2017.07.130
    [13] PHILIPP Hadl, HOANG Kim, NGUYEN Viet Tue. Experimental investigations on the scattering in the post cracking tensile behavior of UHPFRC[C]. International Interactive Symposium on UHPFRC, 2016.
    [14] BABSKI V. Characterization of ultra-high performance fibre reinforced concrete (UHPFC) under tensile loading by acoustic emission and optical deformation analysis[C]. Proceedings of HiPerMat 2016-4th International Sympo-sium on Ultra-High Performance Concrete and High Performance Construction Materials Kassel, 2016: 1-9.
    [15] LEE J H, HONG S G, JOH C, et al. Biaxial tension-compression strength behavior of UHPFRC in-plane elements[J]. Materials and Structures,2017,50(20):3-17.
    [16] 苏家战, 林毅焌, 陈宝春, 等. 不同形状钢纤维对UHPC受拉性能影响的试验研究[J]. 宁夏大学学报(自然科学版), 2020, 41(3):246-251.

    SU Jiazhan, LIN Yijun, CHEN Baochun, et al. Experimental study on the tensile properties of ultra-high performance concrete with different types of steel fiber[J]. Journal of Ningxia University (Natural Science Edition),2020,41(3):246-251(in Chinese).
    [17] 苏家战, 林毅焌, 陈宝春, 等. 混杂钢纤维UHPC单轴拉伸性能的混杂效应分析[J]. 南昌大学学报(工科版), 2019, 41(4):358-364.

    SU Jiazhan, LIN Yijun, CHEN Baochun, et al. Hydrid effects of steel fibers on the uniaxial tensile properties of ultra-high performance concrete[J]. Journal of Nanchang University (Engineering & Technology),2019,41(4):358-364(in Chinese).
    [18] RYDVAL M, TOMÁ B, KOLÍSKO J, et al. Impact of steel fibers on workability and properties of UHPC[J]. Solid State Phenomena,2016,249:57-61. doi: 10.4028/www.scientific.net/SSP.249.57
    [19] 中国建筑材料工业协会. 水泥砂浆流动度测试标准: GB2419—2005[S]. 北京. 中国标准出版社, 2005.

    China Building Material Council. Test methods for flowability of cement paste: GB2419—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [20] 中国国家标准化管理委员会. 活性粉末混凝土: GB/T 31387—2015[S]. 北京. 中国标准出版社, 2015.

    Standardization Administration of the People's Republic of China. Reactive powder concrete: GB/T 31387—2015[S]. Beijing: Standards Press of China, 2015(in Chinese).
    [21] ALSALMAN A, DANG C N, PRINZ G S, et al. Evaluation of modulus of elasticity of ultra-high performance concrete[J]. Construction and Building Materials,2017,153:918-928. doi: 10.1016/j.conbuildmat.2017.07.158
    [22] 何峰, 黄政宇. 原材料对RPC强度的影响初探[J]. 湖南大学学报(自科版), 2001, 28(2):89-94.

    HE Feng, HUANG Zhengyu. Study on the effect of materials on RPC strength[J]. Journal of Hunan University (Na-tural Sciences),2001,28(2):89-94(in Chinese).
    [23] 赵秋山, 徐慎春, 刘中宪. 钢纤维增强超高性能混凝土抗压性能的细观数值模拟[J]. 复合材料学报, 2018, 35(6):1661-1673.

    ZHAO Chunshan, XU Shenchun, LIU Zhongxian. Microscopic numerical simulation of the uniaxial compression of steel fiber reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(6):1661-1673(in Chinese).
    [24] HASSAN A M T, JONES S W, MAHMUD G H. Experimental test methods to deter mine the uniaxial tensile and compressive behavior of ultra high performance fibre reinforced concrete (UHPFRC)[J]. Construction & Building Materials,2012,37:874-882.
    [25] PYO S, KIM H K, LEE B Y. Effects of coarser fine aggregate on tensile properties of ultra high performance concrete[J]. Cement and Concrete Composites,2017,84:28-35. doi: 10.1016/j.cemconcomp.2017.08.014
    [26] REDON C, CHERMANT L, CHERMANT J L, et al. Assessment of fibre orientation in reinforced concrete using Fourier image transform[J]. Journal of Microscopy,2010,191(3):258-265.
    [27] LATASTE J F, BEHLOUL M, BREYSSE D. Characterization of fibres distribution in a steel fibre reinforced concrete with electrical resistivity measurements[J]. NDT & E International,2008,41(8):638-647.
    [28] LIU J, SUN W, MIAO C, et al. Assessment of fiber distribution in steel fiber mortar using image analysis[J]. Journal of Wuhan University of Technology,2012,27:166-171. doi: 10.1007/s11595-012-0429-z
    [29] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ55—2000[S]. 北京: 中国建筑工业出版社, 2001.

    Ministry of Housing and Urban-Rural Development of People's Republic of China. Specification for mix proportion design of ordinary concrete: JGJ55—2000[J]. Beijing: China Architecture & Building Press, 2001(in Chinese).
    [30] YOO D Y, LEE J H, YOON Y S. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites[J]. Composite Structures,2013,106(12):742-753.
    [31] SU Yu, LI Jun, WU Chengqing, et al. Effects of steel fibres on dynamic strength of UHPC[J]. Construction & Building Materials,2016,114(71):708-718.
    [32] WILLE K, KIM D J, NAAMAN A E. Strain-hardening UHP-FRC with low fiber contents[J]. Materials and Structures,2011,44(3):583-598. doi: 10.1617/s11527-010-9650-4
    [33] LI Ye, TAN Kanghai, ZHANG Dong. Optimization of compressive strength and tensile strength of ultra-high performance concrete[C]. Proceedings of the International Symposium on Ultra-High Performance Concrete and High Performance Materials (HiperMat 2016), Kassel, 2016.
    [34] ASHOUR S A, WAFA F F, KAMAL M I. Effect of the concrete compressive strength and tensile reinforcement ratio on the flexural behavior of fibrous concrete beams[J]. Engineering Structures,2000,22(9):1145-1158. doi: 10.1016/S0141-0296(99)00052-8
    [35] PYO S, TAFESSE M, KIM H, et al. Effect of chloride content on mechanical properties of ultra high performance concrete[J]. Cement and Concrete Composites,2017,84:175-187. doi: 10.1016/j.cemconcomp.2017.09.006
    [36] LIM W Y, HONG S G. Compressive behavior of hybrid steel fiber reinforced ultra-high performance concrete[J]. Journal of the Korea Concrete Institute,2016,28(2):213-221. doi: 10.4334/JKCI.2016.28.2.213
    [37] NEUNZIG C, HEIERMANN T, RAUPACH M. Deter mination of the uniaxial tensile strength of concrete with a modified test setup[C]. 4th International Conference on Strain-Hardening Cement-Based Composites. Dresden: Strain-Hardening Cement-Based Composites, 2018:316-323.
    [38] HUNG C C, LEE H S, CHAN S N. Tension-stiffening effect in steel-reinforced UHPFRC composites: Constitutive model and effects of steel fibers, loading patterns, and rebar sizes[J]. Composites Part B: Engineering,2018,158:1-23.
    [39] WILLE K, NAAMAN A E, EL-TAWIL S, et al. Ultra-high performance concrete and fiber reinforced concrete: Achieving strength and ductility without heat curing[J]. Materials & Structures,2012,45(3):309-324.
    [40] ORGASS M, KLUG Y. Fibre reinforced ultra-high strength concretes[C]. Proceedings of the International Symposium on Ultra High Performance Concrete. Kassel, 2004.
    [41] GRÜNEWALD S, SCHIPPER R, HORDIJK D. Double-curved panels produced in a flexible mold with self-compacting fibre-reinforced concrete[J]. Ultra-High Performance Concrete and High Performance Construction Materials (HIPERMAT),2016,27:1-8.
    [42] GUENET T, BABY F, MARCHAND P, et al. Flexural failure modes and ductility assessment of ribbed triangular UHPFRC plates[C]. First International Interactive Symposium on UHPC, Kassel: University of Kassel. 2016:1-8.
    [43] PREM P R, MURTHY A R, BHARATKUMAR B H. Influence of curing regime and steel fibres on the mechanical properties of UHPFRC[J]. Magazine of Concrete Research,2015,67(17-18):1-15.
    [44] WU Z, SHI C, HE W, et al. Static and dynamic compressive properties of ultra-high performance concrete (UHPFRC) with hybrid steel fiber reinforcements[J]. Cement & Concrete Composites,2017,79:148-157.
    [45] EMPELMANN M, TEUTSCH M, STEVEN G. Improvement of the post fracture behavior of UHPFRC by fibres[C]. Second International Symposium on Ultra High Performance Concrete, Kassel: University of Kassel. 2008: 177-183.
    [46] HOANG A L, FEHLING E, THAI D K, et al. Evaluation of axial strength in circular STCC columns using UHPFRC and UHPFRC[J]. Journal of Constructional Steel Research,2018,153:533-549.
    [47] HEROLD G, MÜLLER H S. Measurement of porosity of ultra high strength fibre reinforced concrete[C]. Proceedings of the International Symposium on Ultra-High Performance Concrete, Kassel: University of Kassel. 2004: 685-694.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  1124
  • HTML全文浏览量:  412
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-27
  • 录用日期:  2021-01-04
  • 网络出版日期:  2021-01-15
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回