留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维连续小波变换与数据融合技术的逆有限元法-伪激励法结构损伤识别方法

徐浩 沙刚刚 李腾腾 李建乐 武湛君

徐浩, 沙刚刚, 李腾腾, 等. 基于二维连续小波变换与数据融合技术的逆有限元法-伪激励法结构损伤识别方法[J]. 复合材料学报, 2021, 38(10): 3564-3572. doi: 10.13801/j.cnki.fhclxb.20210115.001
引用本文: 徐浩, 沙刚刚, 李腾腾, 等. 基于二维连续小波变换与数据融合技术的逆有限元法-伪激励法结构损伤识别方法[J]. 复合材料学报, 2021, 38(10): 3564-3572. doi: 10.13801/j.cnki.fhclxb.20210115.001
XU Hao, SHA Ganggang, LI Tengteng, et al. Structure damage identification method of inverse finite element method-pseudo-excitation method based on 2D continuous wavelet transform and data fusion technology[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3564-3572. doi: 10.13801/j.cnki.fhclxb.20210115.001
Citation: XU Hao, SHA Ganggang, LI Tengteng, et al. Structure damage identification method of inverse finite element method-pseudo-excitation method based on 2D continuous wavelet transform and data fusion technology[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3564-3572. doi: 10.13801/j.cnki.fhclxb.20210115.001

基于二维连续小波变换与数据融合技术的逆有限元法-伪激励法结构损伤识别方法

doi: 10.13801/j.cnki.fhclxb.20210115.001
基金项目: 国家自然科学基金 (12072056)
详细信息
    通讯作者:

    李腾腾,博士,研究方向为结构健康监测 E-mail:litengteng@mail.dlut.edu.cn

  • 中图分类号: TB332

Structure damage identification method of inverse finite element method-pseudo-excitation method based on 2D continuous wavelet transform and data fusion technology

  • 摘要: 在逆有限元法(iFEM)与伪激励法(PE)相结合的损伤识别方法框架下,通过引入二维连续小波变换与数据融合技术,增强了iFEM-PE方法的抗噪能力及工程适用性。通过算例分析可知,iFEM能够借助有限应变测量数据实时准确地重构结构位移,进而使PE方法摆脱了对在线位移测量的依赖。另一方面,PE法对结构损伤具有高敏感性,适用于损伤的精确定位与定量。针对iFEM-PE方法对噪声的敏感性,二维连续小波变换可以在时频域实现信号联合分析,加强损伤特征并抑制噪音。另一方面,数据融合技术通过对不同工况下损伤识别结果的综合处理,有效提升了损伤识别的适用性与稳定性。结果显示,以上方法在噪音影响下可对复合材料结构的分层损伤进行精确定位。

     

  • 图  1  iQS4逆壳单元 (a) 和其局部自由度 (b)

    Figure  1.  iQS4 inverse element (a) and its local nodal degrees of freedom (b)

    u, v—Displacement of x and y directions in the plane, respectively; w—Transverse deflection displacement in the z direction; θx, θy and θz—Rotation angles with the positive x, y and z axes as normals, respectively

    图  2  iQS4单元上离散应变测量

    Figure  2.  Discrete surface strains measured on the iQS4 element

    ${\varepsilon _{xx}^ + } $ , ${\varepsilon _{yy}^ + } $ , ${\gamma _{xy}^ + } $ , ${\varepsilon _{xx}^{\rm{ - }}} $ , ${\varepsilon _{yy}^{\rm{ - }}} $ , ${\gamma _{xy}^{\rm{ - }}} $ —Strain components measured on structural surface; h—Element thickness

    图  3  改进后的逆有限元-伪激励法框架流程图

    Figure  3.  Flowchart of the improved inverse finite element method-pseudo-excitation method framework

    2D-CWT—Two dimensional continuous wavelet transform; PE—Pseudo-excitation approach; iFEM—Inverse finite element method

    图  4  碳纤维增强树脂复合材料(CFRP)层合板分层的位置与尺寸

    Figure  4.  Location and size of delamination of carbon fiber reinforced polymer (CFRP)

    图  5  CFRP层合板逆有限元方法(iFEM)单元尺寸对计算精度的影响

    Figure  5.  Influence of element size of CFRP laminate on calculation accuracy using inverse finite element method (iFEM)

    图  6  有限元方法(FEM)计算得到的 (a) 及iFEM反演得到的(b)CFRP层合板振动位移

    Figure  6.  Vibration displacements of CFRP laminate computed by direct finite element method (FEM) (a) and reconstructed by iFEM (b)

    图  7  基于引入1% (a) 和2% (b) 噪声后的应变数据iFEM反演得到的CFRP层合板振动位移

    Figure  7.  Vibration displacements of CFRP laminate reconstructed by iFEM based on strains with noise level of 1% (a) and 2% (b)

    图  8  基于引入误差为0 (a)、1% (b) 和2% (c) 的FEM位移数据计算得到的CFRP层合板损伤指数ID

    Figure  8.  Damage index ID of CFRP laminate based on the displacement computed by FEM with 0 (a), 1% (b) and 2% (c) error

    图  9  基于引入误差为0% (a)、1% (b)、2% (c)的iFEM位移数据计算得到的CFRP层合板损伤指数ID

    Figure  9.  Damage index ID of CFRP laminate based on the displacement computed by iFEM with 0% (a), 1% (b) and 2% (c) error

    图  10  基于引入误差为0% (a)、1% (b)、2% (c) 的iFEM位移数据计算并经过二维小波处理得到的CFRP层合板损伤指数ID

    Figure  10.  Damage index ID of CFRP laminate based on the displacement computed by iFEM and treated by 2D-CWT with 0% (a), 1% (b) and 2% (c) error

    图  11  基于iFEM计算结果构建的 (a) 利用二维小波变换处理并数据融合后 (b) 的CFRP层合板损伤指数

    Figure  11.  Damage index of CFRP laminate based on the displacement computed by iFEM (a) and treated by 2D-CWT and data fusion (b)

  • [1] TAKEDA S I, AOKI Y, et al. Damage monitoring of CFRP stiffened panels under compressive load using FBG sensors Composite Structures,2012,94(3):813-819. doi: 10.1016/j.compstruct.2011.02.020
    [2] ZOU Y, TONG L, STEVEN G. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures-A review Journal of Sound & Vibration,2000,230(2):357-378.
    [3] YANG Z, LIU K, ZHOU K, et al. Investigation of thermo-acoustoelastic guided waves by semi-analytical finite element method Ultrasonics,2020,106:106141. doi: 10.1016/j.ultras.2020.106141
    [4] WU Z, YANG Z, ZHANG J, et al. Acoustoelastic guided wave propagation in axial stressed arbitrary cross-section Smart Materials and Structures,2018,28(4):045013.
    [5] 张佳奇, 陈铎, 郑跃滨, 等. 基于压电传感器的树脂基复合材料固化过程监测[J]. 复合材料学报, 2020, 37(11):2776-2781.

    ZHANG Jiaqi, CHEN Duo, ZHENG Yuebin, et al. Piezoelectric transducers based curing monitoring of resin matrix composites Acta Materiae Compositae Sinica,2020,37(11):2776-2781(in Chinese).
    [6] FARRAR C R, DOEBLING S W, et al. Vibration-based structural damage identification Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences,2001.
    [7] FAN W, QIAO P. Vibration-based damage identification methods: A review and comparative study Structural Health Monitoring,2011,9(1):83-111.
    [8] LEE Y S, CHUNG M J. A study on crack detection using eigenfrequency test data Computers & Structures,2000,77(3):327-342.
    [9] ALVANDI A, CREMONA C. Assessment of vibration-based damage identification techniques Journal of Sound and Vibration,2006,292(1-2):179-202. doi: 10.1016/j.jsv.2005.07.036
    [10] YAM L H, YAN Y J, JIANG J S. Vibration-based damage detection for composite structures using wavelet transform and neural network identification Composite Structures,2003,60(4):403-412. doi: 10.1016/S0263-8223(03)00023-0
    [11] XU H, CHENG L, SU Z, et al. Identification of structural damage based on locally perturbed dynamic equilibrium with an application to beam component Journal of Sound and Vibration,2011,330(24):5963-5981. doi: 10.1016/j.jsv.2011.07.028
    [12] XU H, CHENG L, SU Z, et al. Damage visualization based on local dynamic perturbation: Theory and application to characterization of multi-damage in a plane structure Journal of Sound and Vibration,2013,332(14):3438-3462. doi: 10.1016/j.jsv.2013.01.033
    [13] XU H, SU Z, CHENG L, et al. A “Pseudo-excitation” approach for structural damage identification: From “Strong” to “Weak” modality Journal of Sound and Vibration,2015:181-198.
    [14] XU H, SU Z, CHENG L, et al. Reconstructing interfacial force distribution for identification of multi-debonding in steel-reinforced concrete structures using noncontact laser vibrometry Structural Health Monitoring-An International Journal,2013:507-521.
    [15] TESSLER A, SPANGLER J L. A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells Computer Methods in Applied Mechanics and Engineering,2005,194(2):327-339.
    [16] KEFAL A, MAYANG J B, OTERKUS E, et al. Three dimensional shape and stress monitoring of bulk carriers based on iFEM methodology Ocean Engineering,2018:256-267.
    [17] KEFAL A, OTERKUS E. Displacement and stress monitoring of a Panamax containership using inverse finite element method Ocean Engineering,2016,119:16-29.
    [18] KEFAL A, OTERKUS E. Displacement and stress monitoring of a chemical tanker based on inverse finite element method Ocean Engineering,2016,112:33-46.
    [19] CERRACCHIO P, GHERLONE M, TESSLER A, et al. Real-time displacement monitoring of a composite stiffened panel subjected to mechanical and thermal loads Meccanica,2015,50(10):2487-2496. doi: 10.1007/s11012-015-0146-8
    [20] ZHAO Y, DU J, BAO H, et al. Optimal sensor placement based on eigenvalues analysis for sensing deformation of wing frame using iFEM Sensors,2018,18(8):2424. doi: 10.3390/s18082424
    [21] 孙哲, 王建锋, 王静, 等. 基于时空变中值滤波的随机噪声压制方法[J]. 石油地球物理勘探, 2016, 51(6): 1094-1102.

    SUN Zhe, WANG Jianfeng, WANG Jing, et al. Random noise suppression method based on spatiotemporal bimodal median filter[J]. Oil Geophysical Prospecting, 2016, 51(6): 1094-1102(in Chinese).
    [22] 廖立坚, 杨新安, 叶培旭, 等. 基于时空域的探地雷达杂波的去除[J]. 勘察科学技术, 2008, 153(3):59-61. doi: 10.3969/j.issn.1001-3946.2008.03.015

    LIAO Lijian, YANG Xinan, YE Peixu, et al. Ground penetrating radar clutter clutter removal based on space-time domain Site Investigation Science and Technology,2008,153(3):59-61(in Chinese). doi: 10.3969/j.issn.1001-3946.2008.03.015
    [23] 黄敏, 朱德兵, 郭政学, 等. 连续小波变换在探地雷达信号分析中的应用研究[J]. 物探化探计算技术, 2012, 34(5):593-598.

    HUANG Min, ZHU Debing, GUO Zhengxue, et al. Application of continuous wavelet transform in ground penetrating radar signal analysis Computing Techniques for Geophysical and Geochemical Exploration,2012,34(5):593-598(in Chinese).
    [24] ANTOINE J P, MURENZI R, VANDERGHEYNS T P, et al. Two-dimensional wavelets and their relatives[M]. Cambridge: Cambridge University Press, 2004.
    [25] BISKRI S, ANTOINE J P, INHESTER B, et al. Extraction of solar coronal magnetic loops with the directional 2D morlet wavelet transform Solar Physics,2010,262(2):373-385. doi: 10.1007/s11207-010-9533-4
  • 加载中
图(11)
计量
  • 文章访问数:  1040
  • HTML全文浏览量:  369
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-08
  • 录用日期:  2021-01-04
  • 网络出版日期:  2021-01-15
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回