留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZIF-8/丙烯酸十四-十六酯共聚物和PB/丙烯酸十四-十六酯共聚物形状稳定相变材料的制备与性能

陈赛 陶丽娟 李伟 赵永男 张兴祥

陈赛, 陶丽娟, 李伟, 等. ZIF-8/丙烯酸十四-十六酯共聚物和PB/丙烯酸十四-十六酯共聚物形状稳定相变材料的制备与性能[J]. 复合材料学报, 2021, 38(11): 3896-3903. doi: 10.13801/j.cnki.fhclxb.20210113.001
引用本文: 陈赛, 陶丽娟, 李伟, 等. ZIF-8/丙烯酸十四-十六酯共聚物和PB/丙烯酸十四-十六酯共聚物形状稳定相变材料的制备与性能[J]. 复合材料学报, 2021, 38(11): 3896-3903. doi: 10.13801/j.cnki.fhclxb.20210113.001
CHEN Sai, TAO Lijuan, LI Wei, et al. Fabrication and characterization of shape-stabilized phase change materials of ZIF-8/P(tetradecyl acrylate-co-hexadecyl acrylate) and prussian blue/ (tetradecyl acrylate-co-hexadecyl acrylate)[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3896-3903. doi: 10.13801/j.cnki.fhclxb.20210113.001
Citation: CHEN Sai, TAO Lijuan, LI Wei, et al. Fabrication and characterization of shape-stabilized phase change materials of ZIF-8/P(tetradecyl acrylate-co-hexadecyl acrylate) and prussian blue/ (tetradecyl acrylate-co-hexadecyl acrylate)[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3896-3903. doi: 10.13801/j.cnki.fhclxb.20210113.001

ZIF-8/丙烯酸十四-十六酯共聚物和PB/丙烯酸十四-十六酯共聚物形状稳定相变材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20210113.001
基金项目: 国家自然科学基金(51573135)
详细信息
    通讯作者:

    张兴祥,博士,教授,博士生导师,研究方向为功能材料  E-mail:zhangpolyu@aliyun.com

  • 中图分类号: TB32;TQ324

Fabrication and characterization of shape-stabilized phase change materials of ZIF-8/P(tetradecyl acrylate-co-hexadecyl acrylate) and prussian blue/ (tetradecyl acrylate-co-hexadecyl acrylate)

  • 摘要: 形状稳定的相变材料(SPCMs)是绿色的可重复使用的储能材料。由于丙烯酸正烷基酯共聚物的熔融温度可通过控制侧链长度来调节,因此可以得到适宜的相变温度。用一种基于金属-有机骨架纳米粒子稳定悬浮聚合法制备出了功能MOFs/聚合物复合材料—ZIF-8/丙烯酸十四-十六酯共聚物(ZIF-8/P(TDA-co-HDA))与PB/丙烯酸十四-十六酯共聚物(PB/P(TDA-co-HDA)),通过使用此技术,可以将功能性纳米颗粒固定在聚合物表面上,ZIF-8和PB起到形状稳定的作用。ZIF-8/P(TDA-co-HDA)的吸放热温度分别为37.5℃和8.4℃,相变焓值为63 J/g,PB/P(TDA-co-HDA)在39.1℃吸热,10.1℃放热,相变焓值为68 J/g。该种材料在60℃时保持其形状没有任何泄漏,这远高于P(TDA-co-HDA)的熔融温度。在1000个热循环后,ZIF-8/P(TDA-co-HDA)和PB/P(TDA-co-HDA)仍表现出良好的结晶行为和热可靠性。制备的新型形状稳定相变材料在热能存储应用中具有潜在的用途。

     

  • 图  1  沸石咪唑骨架材料(ZIF-8)/P(丙烯酸十四酯(TDA)-co-丙烯酸十六酯(HDA))和普鲁士蓝(PB)/P(TDA-co-HDA)合成示意图

    Figure  1.  Schematic illustration of zeolite imidazole skeleton material (ZIF-8)/P(tetradecyl acrylate (TDA)-co-hexadecyl acrylate (HDA)) and prussian blue (PB)/P(TDA-co-HDA)

    PCM—Phase-change material

    图  2  TDA、HDA、ZIF-8、PB、P(TDA-co-HDA)、ZIF-8/P(TDA-co-HDA)和PB/P(TDA-co-HDA)的FTIR图谱

    Figure  2.  FTIR spectra of TDA, HDA), ZIF-8, PB, P(TDA-co-HDA), ZIF-8/P(TDA-co-HDA) and PB/P(TDA-co-HDA)

    图  3  ZIF-8 ((a), (b)) 和PB ((c), (d)) 的TEM和SEM图像;ZIF-8/ P(TDA-co-HDA) (e) 和PB/ P(TDA-co-HDA) (f) 的SEM图像和EDS图谱

    Figure  3.  TEM and SEM images of ZIF-8 ((a), (b)) and PB ((c), (d)); SEM images and EDS spectra of ZIF-8/ P(TDA-co-HDA) (e) and PB/ P(TDA-co-HDA) (f)

    图  4  P(TDA-co-HDA)、ZIF-8/P(TDA-co-HDA)和PB/P(TDA-co-HDA)加热和冷却过程中的DSC曲线

    Figure  4.  DSC curves of P(TDA-co-HDA), ZIF-8/P(TDA-co-HDA) and PB/P(TDA-co-HDA) during heating and cooling processes

    图  5  ZIF-8、PB、P(TDA-co-HDA)、ZIF-8/P(TDA-co-HDA)和PB/P(TDA-co-HDA)的TG曲线

    Figure  5.  TG curves of ZIF-8, PB, P(TDA-co-HDA), ZIF-8/P(TDA-co-HDA) and PB/P(TDA-co-HDA)

    图  6  ZIF-8、PB、P(TDA-co-HDA)、ZIF-8/P(TDA-co-HDA)、PB/P(TDA-co-HDA)的XRD图谱

    Figure  6.  XRD patterns of ZIF-8, PB, P(TDA-co-HDA), ZIF-8/P(TDA-co-HDA) and PB/P(TDA-co-HDA)

    图  7  烘箱热处理30 min前后ZIF-8/P(TDA-co-HDA)和PB/P(TDA-co-HDA)的照片

    Figure  7.  Photographs of ZIF-8/P(TDA-co-HDA) and PB/P(TDA-co-HDA) before and after the thermal treatment in an oven, 30 min

    图  8  热循环处理前后ZIF-8/P(TDA-co-HDA) ((a), (c)) 和PB/P(TDA-co-HDA) ((b), (d)) 的FTIR图谱和DSC曲线

    Figure  8.  FTIR spectra and DSC curves ofZIF-8/P(TDA-co-HDA) ((a), (c)) and PB/P(TDA-co-HDA) ((b), (d)) before and after the various thermal cycling treatments

    表  1  P(TDA-co-HDA)、ZIF-8/P(TDA-co-HDA)和PB/P(TDA-co-HDA)的相变特性

    Table  1.   Thermal properties of P(TDA-co-HDA), ZIF-8/P(TDA-co-HDA) and PB/P(TDA-co-HDA)

    SampleΔHm/(J·g−1)Tmo/℃Tmp/℃ΔHc/(J·g−1)Tco/℃Tcp/℃T5wt%/℃
    P(TDA-co−HDA) 70 30.9 38.2 −70 19.9 9.1 290.8
    ZIF-8/P(TDA-co-HDA) 62 27.9 37.5 −63 19.6 8.4 227.6
    PB/P(TDA-co−HDA 68 31.9 39.1 −68 19.7 10.1 254.8
    Notes: Tmo—Onset melting temperature on the DSC heating curve; Tmp—Peak melting temperature on the DSC heating curve; ΔHm—Melting enthalpy; Tco—Onset crystallizing temperature on the crystallization curve; Tcp—Peak crystallizing temperature on the crystallization curve; ΔHc—Crystallizing enthalpy; T5wt%—Temperature at mass loss of 5wt%.
    下载: 导出CSV

    表  2  热循环处理前后ZIF-8/P(TDA-co-HDA)和PB/P(TDA-co-HDA)的DSC数据

    Table  2.   DSC datas of ZIF-8/P(TDA-co-HDA) and PB/P(TDA-co-HDA) before and after thermal cycling treatments

    Sample ΔHm/(J·g−1)Tmo/℃Tmp/℃ΔHc/(J·g−1)Tco/℃Tcp/℃
    ZIF-8/P(TDA-co-HDA)1 cycle 62 27.9 37.5 −63 19.6 8.4
    1000 cycles 60 27.6 37.4 −61 19.5 8.5
    PB/P(TDA-co-HDA) 1 cycle 68 31.9 39.1 −68 19.7 10.1
    1000 cycles 67 32.1 39.2 −66 19.9 9.9
    下载: 导出CSV
  • [1] AYDM A A, OKUTAN H. High-chain fatty acid esters of myristyl alcohol with even carbon number: novel organic phase change materials for thermal energy storage-1[J]. Solar Energy Materials & Solar Cells,2011,95(10):2752-2762.
    [2] WANG C Y, FENG L L, XIN G B, et al. Graphene oxide stabilized polyethylene glycol for heat storage[J]. Physical Chemistry Chemical Physics PCCP,2012,14(38):13233-13238. doi: 10.1039/c2cp41988b
    [3] LI D, WANG J P, WANG Y N, et al. Effect of N-isopropylacrylamide on the preparation and properties of microencapsulated phase change materials[J]. Energy,2016,106:221-230. doi: 10.1016/j.energy.2016.03.035
    [4] ZHANG Z L, ZHANG X X, SHI H F, et al. Thermo-regulated sheath/core submicron fiber with poly(diethylene glycol hexadecyl ether acrylate) as a core[J]. Textile Research Journal,2015,86(5):493-501.
    [5] LI W, ZHANG R, JIANG N, et al. Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage[J]. Energy,2013,57:607-614. doi: 10.1016/j.energy.2013.05.007
    [6] PEI D F, CHEN S, LI W, et al. Poly(mono/diethylene glycol n-tetradecyl ether vinyl ether)s with various molecular weights as phase change materials[J]. Polymers,2018,10(2):197-215. doi: 10.3390/polym10020197
    [7] BEHZADI S, FARID M M. Long term thermal stability of organic PCMs[J]. Applied Energy,2014,; 122:11-16.
    [8] Li W, GENG X Y, HUANG R, et al. Microencapsulated comb-like polymeric solid-solid phase change materials via in-situ polymerization[J]. Polymers,2018,10(2):172-178. doi: 10.3390/polym10020172
    [9] AMIN M, PUTRA N, KOSASIH E A, et al. Thermal properties of beeswax/graphene phase change material as energy storage for building applications[J]. Applied Thermal Engineering,2017,112:273-280. doi: 10.1016/j.applthermaleng.2016.10.085
    [10] MEMON S A. Phase change materials integrated in building walls: A state of the art review[J]. Renewable & Sustainable Energy Reviews,2014,31:870-906.
    [11] 宋晓庆, 姜猛进, 叶光斗, 等. 石蜡/聚乙烯醇相变储能纤维的制备与表征[J]. 复合材料学报, 2008, 25(1):17-22. doi: 10.3321/j.issn:1000-3851.2008.01.003

    SONG X Q, JIANG M J, YE G D, et al. Preparation and characterization of paraffin/polyvinyl alcohol phase change fibers for energy storage[J]. Acta Materiae Compositae Sinica,2008,25(1):17-22(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.01.003
    [12] CHEN C, WANG L, HUANG Y. Electro spun phase change fibers based on polyethylene glycol/cellulose acetate blends[J]. Applied Energy,2011,88:3133-3139. doi: 10.1016/j.apenergy.2011.02.026
    [13] CAO R R, LI X, CHEN S, et al. Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites[J]. Energy,2017,138:157-166. doi: 10.1016/j.energy.2017.07.049
    [14] CAO R R, LIU H H, CHEN S, et al. Fabrication and properties of graphene oxide-grafted-poly(hexadecyl acrylate) as a solid-solid phase change material[J]. Composites Science and Technology,2017,149:262-268. doi: 10.1016/j.compscitech.2017.06.019
    [15] O"LEARY K A, PAUL D R. Physical properties of poly(n-alkyl acrylate) copolymers. Part 2. Crystalline/non-crystalline combinations[J]. Polymer,2006,47:1245-1258. doi: 10.1016/j.polymer.2005.12.006
    [16] 李树芹, 陈赛, 王学晨, 等. 梳状相变聚合物为芯材的复合调温纤维的制备及热性能[J]. 复合材料学报, 2018, 35(1):8-15.

    LI S Q, CHEN S, WANG X C, et al. Fabrication and properties of wet-spun thermo-regulating fibers with a novel comb-like phase change polymer core[J]. Acta Materiae Compositae Sinica,2018,35(1):8-15(in Chinese).
    [17] BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of Zeolitic Imidazolate frameworks and application to CO2 capture[J]. Science,2008,319(5865):939-943. doi: 10.1126/science.1152516
    [18] YUAN S, FENG L, WANG K, et al. Stable metal-organic frameworks: Design, synthesis, and applications[J]. Advanced Materials,2018,30(37):1704303-1704338. doi: 10.1002/adma.201704303
    [19] BANGERJEE R, FURUKAWA H, BRITT D, et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. Journal of the American Chemical Society,2009,131(11):3875-3877. doi: 10.1021/ja809459e
    [20] EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science,2002,295:469-472. doi: 10.1126/science.1067208
    [21] YAGHI O M, O"KEEFFE M, OCKWING N W, et al. Reticular synthesis and the design of new materials[J]. Nature,2003,423(6941):705-714. doi: 10.1038/nature01650
    [22] CHEN S, YU Y, CAO R R, et al. Fabrication and characterization of novel shape-stabilized phase change materials based on P(TDA-co-HDA)/GO composites[J]. Polymers,2019,11(7):1113-1125. doi: 10.3390/polym11071113
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1382
  • HTML全文浏览量:  417
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-16
  • 录用日期:  2021-01-05
  • 网络出版日期:  2021-01-14
  • 刊出日期:  2021-11-01

目录

    /

    返回文章
    返回