留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化钒-1, 4-双(苯并噁唑-2-基)萘复合薄膜及其热致变色和发光性能

秦成远 高迎 王程 聂永 徐慧妍 李良 苗金玲 蒋绪川

秦成远, 高迎, 王程, 等. 二氧化钒-1, 4-双(苯并噁唑-2-基)萘复合薄膜及其热致变色和发光性能[J]. 复合材料学报, 2021, 38(10): 3412-3423. doi: 10.13801/j.cnki.fhclxb.20210111.002
引用本文: 秦成远, 高迎, 王程, 等. 二氧化钒-1, 4-双(苯并噁唑-2-基)萘复合薄膜及其热致变色和发光性能[J]. 复合材料学报, 2021, 38(10): 3412-3423. doi: 10.13801/j.cnki.fhclxb.20210111.002
QIN Chengyuan, GAO Ying, WANG Cheng, et al. Vanadium dioxide-1, 4-bis(benzoxazol-2-yl)naphthalene composite films and their thermochromic and photoluminescent property[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3412-3423. doi: 10.13801/j.cnki.fhclxb.20210111.002
Citation: QIN Chengyuan, GAO Ying, WANG Cheng, et al. Vanadium dioxide-1, 4-bis(benzoxazol-2-yl)naphthalene composite films and their thermochromic and photoluminescent property[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3412-3423. doi: 10.13801/j.cnki.fhclxb.20210111.002

二氧化钒-1, 4-双(苯并噁唑-2-基)萘复合薄膜及其热致变色和发光性能

doi: 10.13801/j.cnki.fhclxb.20210111.002
基金项目: 济南大学和山东莘纳智能新材料有限公司资助项目
详细信息
    通讯作者:

    聂永,博士,教授,硕士生导师,研究方向为有机-无机复合功能材料  E-mail:chm_niey@ujn.edu.cn

    蒋绪川,博士,教授,博士生导师,研究方向为光、热、电、磁等外界刺激响应型无机功能材料;隔热节能玻璃的工程化  E-mail:ism_jiangxc@ujn.edu.cn

  • 中图分类号: TB332

Vanadium dioxide-1, 4-bis(benzoxazol-2-yl)naphthalene composite films and their thermochromic and photoluminescent property

  • 摘要: 二氧化钒(VO2)是一种较理想的可用于调节室内温度的热致变色智能玻璃材料。然而,VO2基智能玻璃涂层的应用一直受到其固有的令人不易接受的棕黄色等问题的限制。本文用1, 4-双(苯并噁唑-2-基)萘(KCB)与掺钨二氧化钒纳米颗粒制备了双层结构VO2-KCB复合薄膜,其中有机荧光分子KCB层吸收太阳光中的紫外线,发出蓝绿色荧光,使复合薄膜在太阳光下呈现浅蓝色或蓝绿色,以改善VO2薄膜固有的棕黄色。复合薄膜具有9%以上的太阳光调制能力ΔTsol,可见光透过率Tlum大于73%,且具有较好防紫外性能。这些性能将非常有利于进一步拓展VO2基智能玻璃涂层的实际应用。

     

  • 图  1  1,4-双(苯并噁唑-2-基)萘(KCB)的结构

    Figure  1.  Structure of 1,4-bis(benzoxazol-2-yl)naphthalene (KCB)

    图  2  VO2-有机荧光分子复合薄膜的双层结构

    Figure  2.  Double-layer structure of VO2-organic molecule composite film

    图  3  不同温度下VO2-有机荧光分子复合薄膜的示意图

    Figure  3.  Schematic diagram of VO2-fluorescent organic molecule composite film at different temperatures

    图  4  VO2纳米颗粒的XRD图谱

    Figure  4.  XRD pattern of VO2 nanoparticles

    图  5  VO2纳米颗粒的DSC曲线

    Figure  5.  DSC curves of VO2 nanoparticles

    图  6  VO2纳米颗粒的SEM图像

    Figure  6.  SEM image of VO2 nanoparticles

    图  7  VO2薄膜的SEM图像及EDS元素映射图像

    Figure  7.  SEM image and EDS element mapping images of VO2 film

    图  8  KCB5薄膜的SEM图像及EDXS元素映射图像

    Figure  8.  SEM image and EDS element mapping images of KCB5 film

    图  9  VO2-KCB5复合薄膜的SEM图像及EDS元素映射图像

    Figure  9.  SEM image and EDS element mapping images of VO2-KCB5 composite film

    图  10  KCB薄膜及VO2薄膜截面的SEM图像

    Figure  10.  SEM images of the cross-section of KCB films and VO2 film

    图  11  VO2-KCB薄膜截面的SEM图像

    Figure  11.  SEM images of the cross-section of VO2-KCB films

    图  12  KCB2、KCB5和KCB7薄膜的紫外-可见-近红外透射光谱

    Figure  12.  UV-Vis-NIR transmittance spectra of KCB2, KCB5 and KCB7 films

    图  13  VO2薄膜与VO2-KCB复合薄膜的紫外-可见-近红外透射光谱

    Figure  13.  UV-Vis-NIR transmittance spectra of VO2 film and VO2-KCB composite films

    图  14  KCB薄膜和VO2-KCB复合薄膜的荧光发射光谱(激发波长: 365 nm)

    Figure  14.  Fluorescence emission spectra of the KCB films and VO2-KCB composite films (Excitation wavelength: 365 nm)

    图  15  KCB固体粉末的荧光发射光谱(激发波长: 365 nm)

    Figure  15.  Fluorescence emission spectrum of KCB powder(Excitation wavelength: 365 nm)

    图  16  薄膜的CIE 1931色度图及色度坐标(激发波长: 365 nm)

    Figure  16.  CIE 1931 diagrams and the chromaticity coordinates of the films (Excitation wavelength: 365 nm)

    图  17  KCB2、KCB5和KCB7薄膜分别在室内自然光和紫外光(365 nm)下的照片

    Figure  17.  Photographs of KCB2, KCB5 and KCB7 films under indoor ambient light and UV light (365 nm), respectively

    图  18  VO2薄膜、三种VO2-KCB复合薄膜分别在室内自然光和紫外光(365 nm)下的照片

    Figure  18.  Photographs of pure VO2 film and VO2-KCB composite films under indoor ambient light and UV light (365 nm), respectively

    图  19  VO2薄膜和三种VO2-KCB复合薄膜在太阳光下的照片

    Figure  19.  Photographs of pure VO2 film and VO2-KCB composite films under sunlight

    表  1  本文复合薄膜的名称及组成

    Table  1.   Composite films and their composition

    SampleVO2/gKCB/gPolyvinyl butyral (PVB)/gEthanol/mLMethylene chloride/mL
    VO2 0.05 - 1 10 -
    KCB2 - 0.02 1 - 10
    KCB5 - 0.05 1 - 10
    KCB7 - 0.07 1 - 10
    下载: 导出CSV

    表  2  VO2、VO2-KCB复合薄膜的可见光透过率、太阳光透过率和太阳调节效率汇总

    Table  2.   Summary of the luminous transmittance, solar transmittance and solar regulation efficiency for VO2 and VO2-KCB composite films

    FilmTlum/%Tsol/%ΔTsol/%
    20℃90℃20℃90℃
    VO2 73.31 74.80 81.57 72.60 8.97
    VO2-KCB2 75.46 75.54 82.97 73.29 9.68
    VO2-KCB5 73.24 73.13 78.91 69.10 9.81
    VO2-KCB7 72.48 74.03 78.70 68.55 10.15
    Notes: Tsol—Solar transmittance, Tlum—Luminous transmittance; ΔTsol—Solar regulation efficiency, which were calculated from the equation (1).
    下载: 导出CSV
  • [1] MORIN F J. Oxides which show a metal-to-insulator transition at the Neel temperature[J]. Physical Review Letters,1959,3:34-36. doi: 10.1103/PhysRevLett.3.34
    [2] 何山, 韦柳娅, 傅群, 等. 二氧化钒和三氧化二钒研究进展[J]. 无机化学学报, 2003, 19:113-118. doi: 10.3321/j.issn:1001-4861.2003.02.001

    HE Shan, WEI Liuya, FU Qun, et al. Progress of study on vanadium dioxide and sesquioxide[J]. Chinese Journal of Inorganic Chemistry,2003,19:113-118(in Chinese). doi: 10.3321/j.issn:1001-4861.2003.02.001
    [3] 韦柳娅, 傅群, 林晨, 等. 氧钒碱式碳酸铵的热分析和纳米氧化钒的制备[J]. 无机化学学报, 2003, 19:1006-1010. doi: 10.3321/j.issn:1001-4861.2003.09.021

    WEI Liuya, FU Qun, LIN Chen, et al. Thermoanalysis of ammonium oxovanadium (IV) carbonato hydroxide and preparation of powders of vanadium oxides[J]. Chinese Journal of Inorganic Chemistry,2003,19:1006-1010(in Chinese). doi: 10.3321/j.issn:1001-4861.2003.09.021
    [4] 陈文, 彭俊锋, 麦立强, 等. 两种一维纳米结构钒氧化物的合成与表征[J]. 无机化学学报, 2004, 20:147-151. doi: 10.3321/j.issn:1001-4861.2004.02.005

    CHEN Wen, PENG Junfeng, MAI Liqiang, et al. Syntheses and characterizations of two kinds of one-dimensional nanostructure vanadium oxide[J]. Chinese Journal of Inorganic Chemistry,2004,20:147-151(in Chinese). doi: 10.3321/j.issn:1001-4861.2004.02.005
    [5] BABULANAM S M, ERIKSSON T S, NIKLASSON G A, et al. Thermochromic VO2 films for energy-efficient windows[J]. Solar Energy Materials & Solar Cells,1987,16:347-363.
    [6] ZHU H, ZHANG Z, JIANG X. Effect of Al, Ti and Cr doping on vanadium dioxide (VO2) analyzed by density function theory (DFT) method[J]. Journal of Nanoscience and Nano-technology,2020,20:1651-1659. doi: 10.1166/jnn.2020.17140
    [7] ZHOU J, GAO Y, LIU X, et al. Mg-doped VO2 nanoparticles: Hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature[J]. Physical Chemistry Chemical Physics,2013,15:7505-7511. doi: 10.1039/c3cp50638j
    [8] 毛茂, 黄婉霞, 张雅鑫, 等. 钨掺杂二氧化钒薄膜的THz波段相变性能的研究[J]. 无机材料学报, 2012, 27:891-896. doi: 10.3724/SP.J.1077.2012.12131

    MAO Mao, HUANG Wanxia, ZHANG Yaxin, et al. Study on phase transition property of tungsten-doped vanadium dioxide thin film at terahertz range[J]. Journal of Inorganic Materials,2012,27:891-896(in Chinese). doi: 10.3724/SP.J.1077.2012.12131
    [9] DAI L, CAO C, GAO Y, et al. Synthesis and phase transition behavior of undoped VO2 with a strong nano-size effect[J]. Solar Energy Materials & Solar Cells,2011,95:712-715.
    [10] HAO Q, LI W, XU H, et al. VO2/TiN Plasmonic thermochromic smart coatings for room-temperature applications[J]. Advanced Materials,2018,30:1705421. doi: 10.1002/adma.201705421
    [11] ZHOU H, LI J, BAO S, et al. Use of ZnO as antireflective, protective, antibacterial, and biocompatible multifunction nanolayer of thermochromic VO2 nanofilm for intelligent windows[J]. Applied Surface Science,2016,363:532-542. doi: 10.1016/j.apsusc.2015.12.045
    [12] ZHANG J, WANG J, YANG C, et al. Mesoporous SiO2/VO2 double-layer thermochromic coating with improved visible transmittance for smart window[J]. Solar Energy Materials & Solar Cells,2017,162:134-141.
    [13] ZHOU M, BAO J, TAO M, et al. Periodic porous thermochromic VO2(M) films with enhanced visible transmittance[J]. Chemical Communications,2013,49:6021-6023. doi: 10.1039/c3cc42112k
    [14] XIAO H, LI Y, YUAN W, et al. Microstructures and thermochromic characteristics of VO2/AZO composite films[J]. Infrared Physics & Technology,2016,76:580-586.
    [15] 肖敏, 孙睿智, 李艳芳, 等. 基于MoS2/SiO2范德华异质结的VO2薄膜转移打印研究[J]. 无机材料学报, 2019, 34:1161-1166.

    XIAO Min, SUN Ruizhi, LI Yanfang, et al. Transfer printing of VO2 thin films using MoS2/SiO2 van der Waals heterojunctions[J]. Journal of Inorganic Materials,2019,34:1161-1166(in Chinese).
    [16] 张聪, 康朝阳, 宗海明, 等. 应力对蓝宝石衬底上生长二氧化钒薄膜结构和光电性能的调控[J]. 无机材料学报, 2018, 33:1225-1231. doi: 10.15541/jim20180045

    ZHANG Cong, KANG Chaoyang, ZONG Haiming, et al. Stress induced modulation of the structure and photoelectric property of vanadium oxide films on sapphire substrate[J]. Journal of Inorganic Materials,2018,33:1225-1231(in Chinese). doi: 10.15541/jim20180045
    [17] ZHU H, ZHANG Z, JIANG X. Glycothermal Synthesis of VO2(B) nanoparticles for gas sensing application[J]. Journal of Nanoscience and Nanotechnology,2020,20:1946-1954. doi: 10.1166/jnn.2020.17167
    [18] LIU M, SU B, TANG Y, et al. Recent advances in nanostructured vanadium oxides and composites for energy conversion[J]. Advanced Energy Materials,2017,7:1700885. doi: 10.1002/aenm.201700885
    [19] WANG S, LIU M, KONG L, et al. Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties[J]. Progress in Materials Science,2016,81:1-54. doi: 10.1016/j.pmatsci.2016.03.001
    [20] LI S Y, NIKLASSON G A, GRANQVIST C G. Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met[J]. Thin Solid Films,2012,520:3823-3828. doi: 10.1016/j.tsf.2011.10.053
    [21] HEE W, ALGHOUL M, BAKHTYAR B, et al. The role of window glazing on daylighting and energy saving in buildings[J]. Renewable & Sustainable Energy Reviews,2015,42:323-343.
    [22] QAZILBASH M M, SCHAFGANS A A, BURCH K S, et al. Electrodynamics of the vanadium oxides VO2 and V2O3 [J]. Physical Review B,2008,77:115121. doi: 10.1103/PhysRevB.77.115121
    [23] MLYUKA N R, NIKLASSON G A, GRANQVIST C G. Mg doping of thermochromic VO2 films enhances the optical transmittance and decreases the metal-insulator transition temperature[J]. Applied Physics Letters,2009,95:171909. doi: 10.1063/1.3229949
    [24] DAI L, CHEN S, LIU J, et al. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability[J]. Physical Chemistry Chemical Physics,2013,15:11723-11729. doi: 10.1039/c3cp51359a
    [25] DIETRICH M K, KRAMM B G, BECKER M, et al. Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2[J]. Journal of Applied Physics,2015,117:185301. doi: 10.1063/1.4919433
    [26] SAELI M, PICCIRILLO C, PARKIN I P, et al. Nano-compo-site thermochromic thin films and their application in energy-efficient glazing[J]. Solar Energy Materials & Solar Cells,2010,94:141-151.
    [27] ZHOU L, HU M, SONG X, et al. Modified color for VO2/Au/VO2 sandwich structure-based smart windows[J]. Applied Physics A,2018,124:505. doi: 10.1007/s00339-018-1927-4
    [28] ZHU J, HUANG A, MA H, et al. Composite film of vanadium dioxide nanoparticles and ionic liquid-nickel-chlorine complexes with excellent visible thermochromic performance[J]. ACS Applied Materials & Interfaces,2016,8:29742-29748.
    [29] CHEN Y, ZHU J, MA H, et al. VO2/Nickel-bromine-ionic liquid composite film for thermochromic application[J]. Solar Energy Materials & Solar Cells,2019,196:124-130.
    [30] ZHU H, ZHANG Z, LIU M, et al. Electrodeposited vanadium dioxide films with unique optical property[J]. Journal of Nanoscience and Nanotechnology,2019,19:3597-3603. doi: 10.1166/jnn.2019.16093
    [31] ZENG W, CHEN N, XIE W. Research progress on the preparation methods for VO2 nanoparticles and their application in smart windows[J]. Crystengcomm,2020,22:851-869. doi: 10.1039/C9CE01655D
    [32] RIKER L W. Industrial applications of rare earth elements[M]. Washington DC: American Chemical Society, 1981: 81-94.
    [33] LOPES F, RUIVO A, MURALHA V S F, et al. Uranium glass in museum collections[J]. Journal of Cultural Heritage,2008,9:64-68. doi: 10.1016/j.culher.2008.08.009
    [34] LIU X, ZHOU J, ZHOU S, et al. Transparent glass-ceramics functionalized by dispersed crystals[J]. Progress in Materials Science,2018,97:38-96. doi: 10.1016/j.pmatsci.2018.02.006
    [35] LAIA C A T, RUIVO A. Fluorescence in industry[M]. Switzerland: Springer Nature, 2019: 365-388.
    [36] 纪士东, 赵书文, 金平实, 等. 一种二氧化钒基荧光复合材料及其应用: 中国, ZL201811339331.2[P]. 2019-02-15.

    JI Shidong, ZHAO Shuwen, JIN Pingshi, et al. A vanadium dioxide based fluorescent composite and it’s application: China, ZL201811339331.2[P]. 2019-02-15.
    [37] EMIKO K, GANG Y, KAZUHISA H. A novel synthesis of bis(benzoxazole) derivatives via tandem claisen rearrangement[J]. Tetrahedron Letters,2000,41:8111-8116. doi: 10.1016/S0040-4039(00)01414-3
    [38] PARK K, LIM J, SONG S, et al. Nonlinear optical polymers with novel benzoxazole chromophores IV. Synthesis of maleimide-styrene and maleimide-methacrylate copolymers[J]. Reactive & Functional Polymers,1999,40:169-175.
    [39] UM S. The synthesis and properties of benzoxazole fluorescent brighteners for application to polyester fibers[J]. Dyes and Pigments,2007,75:185-188. doi: 10.1016/j.dyepig.2006.04.024
    [40] LIU M O, LIN H, YANG M, et al. Thermal and fluorescent properties of optical brighteners and their whitening effect for pelletization of cycloolefin copolymers[J]. Materials Letters,2006,60:2132-2137. doi: 10.1016/j.matlet.2005.12.112
    [41] GAO Y, LUO H, ZHANG Z, et al. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing[J]. Nano Energy,2012,1:221-246. doi: 10.1016/j.nanoen.2011.12.002
    [42] XYGKIS M, GAGAOUDAKIS E, ZOURIDI L, et al. Thermochromic behavior of VO2/polymer nanocomposites for energy saving coatings[J]. Coatings,2019,9:163. doi: 10.3390/coatings9030163
    [43] LI Y, JI S, GAO Y, et al. Modification of mott phase transition characteristics in VO2@TiO2 core/shell nanostructures by misfit-strained heteroepitaxy[J]. ACS Applied Materials & Interfaces,2013,5:6603-6614.
    [44] ZHU J, ZHOU Y, WANG B, et al. Vanadium dioxide nanoparticle-based thermochromic smart coating: High luminous transmittance, excellent solar regulation efficiency, and near room temperature rhase transition[J]. ACS Applied Materials & Interfaces,2015,7:27796-27803.
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  246
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 录用日期:  2020-12-25
  • 网络出版日期:  2021-01-12
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回