留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碳纤维的新型自支撑电极制备方法

谢海生 吴芮 刘俊逸 胡贝利 任俊 顾在春 武建勋

谢海生, 吴芮, 刘俊逸, 等. 基于碳纤维的新型自支撑电极制备方法[J]. 复合材料学报, 2021, 38(10): 3454-3462. doi: 10.13801/j.cnki.fhclxb.20210111.001
引用本文: 谢海生, 吴芮, 刘俊逸, 等. 基于碳纤维的新型自支撑电极制备方法[J]. 复合材料学报, 2021, 38(10): 3454-3462. doi: 10.13801/j.cnki.fhclxb.20210111.001
XIE Haisheng, WU Rui, LIU Junyi, et al. Preparation method of a new self-supporting electrode based on carbon fiber[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3454-3462. doi: 10.13801/j.cnki.fhclxb.20210111.001
Citation: XIE Haisheng, WU Rui, LIU Junyi, et al. Preparation method of a new self-supporting electrode based on carbon fiber[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3454-3462. doi: 10.13801/j.cnki.fhclxb.20210111.001

基于碳纤维的新型自支撑电极制备方法

doi: 10.13801/j.cnki.fhclxb.20210111.001
详细信息
    通讯作者:

    武建勋,硕士,副教授,硕士生导师,研究方向为聚合物改性及复合材料  E-mail:wwx-ffd@vip.sina.com

  • 中图分类号: TB333;TM53

Preparation method of a new self-supporting electrode based on carbon fiber

  • 摘要:

    借鉴自支撑电极的制备原理,利用电化学沉积结合(NH4)2S2O8和NaOH沉积液进行表面处理等手段制备了基于碳纤维表面Cu(OH)2纳米结构的自支撑电极,分析测试了碳纤维表面的微观形貌、表面元素组成及其分布和表面物质的晶型以及利用水热反应在其表面附着电化学物质MnO2后的电化学性能。结果发现,当(NH4)2S2O8的浓度为0.43 g/L、NaOH浓度为30.48 g/L、处理时间为12 min时,由SEM观察发现碳纤维表面的Cu(OH)2纳米纤维的直径、长度、数量都较适宜;XPS、XRD和EDS的测试结果,沉积液处理后碳纤维表面部分单质铜转化为Cu(OH)2,此结构非常有利于电化学物质的负载而由此构成开放、具有核壳结构的高性能电极材料;恒电流充放电(GCD)测试结果表明此电极材料具有极快的充放电速度。因此本文首次成功地在碳纤维表面的铜层表面原位生长出Cu(OH)2纳米纤维,为未来以超级电容器为代表的能源设备的性能提升和商业化应用开拓了一种新的电极制备方法。

     

  • 图  1  碳纤维表面形貌:(a) 原始碳纤维;(b)~(c) 脱浆后的碳纤维;(d) 电化学沉积后的碳纤维

    Figure  1.  Surface morphologies of carbon fiber: (a) Original carbon fiber; (b)-(c) Carbon fiber after desizing; (d) Carbon fiber after the electrochemical deposition

    图  2  采用已有文献[14]中的沉积液处理的碳纤维表面形貌:(a) 100%沉积液;(b) 80%沉积液

    Figure  2.  Surface morphologies of carbon fiber treated with the deposition solution reported in the literature[14]: (a) 100% of the deposition solution; (b) 80% of the deposition solution

    图  3  采用相同物质比例但浓度不同的沉积液处理后碳纤维的表面形貌

    Figure  3.  Surface morphologies of carbon fiber obtained by deposition solutions of the same molar ratio and different concentrations for different time((a) CF-Cu(OH)2-50-2; (b) CF-Cu(OH)2-50-5; (c) CF-Cu(OH)2-50-10; (d) CF-Cu(OH)2-50-20; (e) CF-Cu(OH)2-75-2; (f) CF-Cu(OH)2-75-5; (g) CF-Cu(OH)2-75-10; (h) CF-Cu(OH)2-75-20; (i) CF-Cu(OH)2-100-2; (j) CF-Cu(OH)2-100-5; (k) CF-Cu(OH)2-100-10; (l) CF-Cu(OH)2-100-20)

    图  4  采用不同物质比例的沉积液处理不同时间后的碳纤维表面形貌

    Figure  4.  Surface morphologies of carbon fiber obtained by deposition solutions with different molar ratios for the same time((a) CF-Cu(OH)2-50/100-20; (b) CF-Cu(OH)2-37.5/100-20; (c) CF-Cu(OH)2-25/100-20; (d) CF-Cu(OH)2-22.5/100-20)

    图  5  采用相同物质比例的沉积液处理不同时间后的碳纤维表面形貌

    Figure  5.  Surface morphologies of carbon fiber obtained by using the deposition solutions of the same molar ratio for different time((a) CF-Cu(OH)2-25/100-10; (b) CF-Cu(OH)2-25/100-12; (c) CF-Cu(OH)2-25/100-14; (d) CF-Cu(OH)2-25/100-16)

    图  6  电化学沉积后碳纤维表面的EDS元素分布图(a);浸入HCl溶液前后碳纤维的实物照片(b);沉积液处理后碳纤维表面的EDS元素分布图(c)

    Figure  6.  EDS mapping results of the sample after electrochemical deposition (a); Photo of the sample before and after put in HCl solution (b); EDS mapping results of the sample after the treatment of the deposition solution (c)

    图  7  CF-Cu(OH)2-25/100-12 的Cu 2p图谱 (a)、O 1s图谱 (b) 和CF-Cu(OH)2-25/100-12的XRD图谱 (c)

    Figure  7.  Cu 2p (a) and O 1s (b) spectra of CF-Cu(OH)2-25/100-12, XRD pattarns of CF-Cu(OH)2-25/100-12 (c)

    图  8  CF-Cu(OH)2/MnO2-1(a)、 CF-Cu(OH)2/MnO2-2(b)的表面形貌;不同样品的质量(c)、恒电流充放电(GCD)曲线(d)

    Figure  8.  Surface morphologies of CF-Cu(OH)2/MnO2-1 (a) and CF-Cu(OH)2/MnO2-2 (b) ; Qualities (c) and galvanostatic charge-discharge (GCD) curves (d) of different samples

    表  1  电化学沉积过程的工艺参数

    Table  1.   Optimal electrochemical deposition process

    ProjectDetail
    CuSO4·5H2O/(g·L−1) 40.00
    C4H4O6KNa·4H2O/(g·L−1) 20.00
    C6H5Na3O7·2H2O/(g·L−1) 180.00
    KNO3/(g·L−1) 24.00
    PEG/(g·L−1)(Mw=6000) 0.20
    Current density/(mA·cm2) 0.95
    Plating time/min 60
    Temperature/℃ 25
    Notes: PEG—Polyethylene glycol; Mw—Weight average molecular weight.
    下载: 导出CSV

    表  2  不同的沉积液组成及处理时间

    Table  2.   Composition of the deposition solution and the treatment time

    Sample name(NH4)2S2O8 concentration/%NaOH concentration/%Time/min
    CF-Cu(OH)2-100-2 100 100 2
    CF-Cu(OH)2-100-5 100 100 5
    CF-Cu(OH)2-100-10 100 100 10
    CF-Cu(OH)2-100-20 100 100 20
    CF-Cu(OH)2-75-2 75 75 2
    CF-Cu(OH)2-75-5 75 75 5
    CF-Cu(OH)2-75-10 75 75 10
    CF-Cu(OH)2-75-20 75 75 20
    CF-Cu(OH)2-50-2 50 50 2
    CF-Cu(OH)2-50-5 50 50 5
    CF-Cu(OH)2-50-10 50 50 10
    CF-Cu(OH)2-50-20 50 50 20
    Note: Concentration of 100% is 17.40 g/L for (NH4)2S2O8 and 30.48 g/L for NaOH.
    下载: 导出CSV

    表  3  不同沉积液的组成

    Table  3.   Different compositions of the deposition solutions

    Sample name(NH4)2S2O8/%NaOH/%Time/min
    CF-Cu(OH)2-50/100-20 50.0 100 20
    CF-Cu(OH)2-37.5/100-20 37.5 100 20
    CF-Cu(OH)2-25/100-20 25.0 100 20
    CF-Cu(OH)2-22.5/100-20 22.5 100 20
    下载: 导出CSV

    表  4  相同沉积液的不同处理时间

    Table  4.   Different treat time of the same deposition solution

    Sample name(NH4)2S2O8/%NaOH/%Time/min
    CF-Cu(OH)2-25/100-10 25 100 10
    CF-Cu(OH)2-25/100-12 25 100 12
    CF-Cu(OH)2-25/100-14 25 100 14
    CF-Cu(OH)2-25/100-16 25 100 16
    CF-Cu(OH)2-25/100-18 25 100 18
    下载: 导出CSV

    表  5  水热反应实验参数

    Table  5.   Experimental parameters of hydrothermal reaction

    KMnO4/(g·L-1)NaOH/(g·L-1)Time/hTemperature/℃
    1.19 0.030 12 155
    下载: 导出CSV

    表  6  不同碳纤维样品表面的元素比例

    Table  6.   Ratio of elements on the fiber surface of different carbon fiber samples

    SampleCu/%O/%
    Before treatment 23.14 76.86
    After treatment 9.33 90.67
    下载: 导出CSV
  • [1] POONAM, SHARMA K, ARORA A, et al. Review of supercapacitors: Materials and devices[J]. Journal of Energy Storage,2019,21:801-825. doi: 10.1016/j.est.2019.01.010
    [2] 何水剑, 陈卫. 碳基三维自支撑超级电容器电极材料研究进展[J]. 电化学, 2015, 21(6):518-533.

    HE Shuijian, CHEN Wei. Research progress of carbon-based three-dimensional self-supporting supercapacitor electrode materials[J]. Electrochemistry,2015,21(6):518-533(in Chinese).
    [3] HO Kuochuan, LIN Luyin. A review of electrode materials based on core-shell nanostructures for electrochemical supercapacitors[J]. Journal of Materials Chemistry A,2019,7:3516-3530. doi: 10.1039/C8TA11599K
    [4] MICHIO Inagaki, HIDETAKA Konno, OSAMU Tanaike. Carbon materials for electrochemical capacitors[J]. Journal of Power Sources,2010,195:7880-7903. doi: 10.1016/j.jpowsour.2010.06.036
    [5] 岳红伟, 陈淑君, 卢帆, 等. 高性能自支撑不锈钢网@MoS2锂离子电池负极材料[J]. 复合材料学报, 2020, 37(6):1476-1482.

    YUE Hongwei, CHEN Shujun, LU Fan, et al. High perfor-mance freestanding stainless steel net@MoS2 lithium-ion battery anode material[J]. Acta Materiae Compositae Sinica,2020,37(6):1476-1482(in Chinese).
    [6] 李寒, 孙志鹏, 贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1):1187-1195.

    LI Han, SUN Zhipeng, JIA Dianzeng. Self-supporting TiO2@NiCo2S4 array composites grown on flexible titanium foils are used as high-performance asymmetric supercapacitor electrodes[J]. Materials Reports,2020,34(1):1187-1195(in Chinese).
    [7] KANG Jiahui, SHENG Jiali, XIE Jinqi, et al. Tubular Cu(OH)2 arrays decorated with nanothorny Co-Ni bimetallic carbonate hydroxide supported on Cu foam: A 3D hierarchical core-shell efficient electrocatalyst for the oxygen evolution reaction[J]. Journal of Materials Chemistry A,2018,6:10064-10073. doi: 10.1039/C8TA02492H
    [8] ZHANG Dongbin, SHAO Yuan, KONG Xianggui, et al. Facile fabrication of large-area hybrid Ni-Co hydroxide/Cu(OH)2/copper foam composites[J]. Electrochimica Acta,2016,218:294-302. doi: 10.1016/j.electacta.2016.09.137
    [9] ZHANG Tengyuan, LI Xia, EATON Asher, at al. Paper with power: Engraving 2D materials on 3D structures for printed, high-performance, binder-free, and all-solid-state supercapacitors[J]. Advanced Functional Materials,2018,28:1803600. doi: 10.1002/adfm.201803600
    [10] WANG Jiexi, ZHANG Qiaobao, LI Xinhai, et al. Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage[J]. Nano Energy,2015,12:437-446. doi: 10.1016/j.nanoen.2015.01.003
    [11] LIU Pengfei, ZHOU Jiaojiao, LI Guochang, et al. A hierarchical NiO/NiMn-layered double hydroxide nanosheet array on Ni foam for high performance supercapacitors[J]. Dalton Transaction,2017,46:7388-7391. doi: 10.1039/C7DT00932A
    [12] ZHOU Enmin, TIAN Liangliang, CHENG Zhengfu, et al. Design of NiO flakes@CoMoO4 nanosheets core-shell architecture on Ni foam for high-performance super-capacitors[J]. Nanoscale Research Letters,2019,14:221. doi: 10.1186/s11671-019-3054-3
    [13] YAN Hailong, ZHANG Deyang, XU Jinyou, et al. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors[J]. Nanoscale Research Letters,2014,9:424. doi: 10.1186/1556-276X-9-424
    [14] WANG Huanwen, YI Huan, CHEN Xiao, et al. Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties[J]. Electrochimica Acta,2013,105:353-361. doi: 10.1016/j.electacta.2013.05.031
    [15] XIN Guoxiang, WANG Yanhui, ZHANG Jinhui, et al. A self-supporting graphene/MnO2 composite for high-perfor-mance supercapacitors[J]. International Journal of Hydrogen Energy,2015,40:10176-10184. doi: 10.1016/j.ijhydene.2015.06.060
    [16] YANG Jie, LI Pengfa, WANG Liujie, et al. In-situ synthesis of Ni-MOF@CNT on graphene/Ni foam substrate as a novel self-supporting hybrid structure for all-solid-state supercapacitors with a high energy density[J]. Journal of Electroanalytical Chemistry,2019,848:113301. doi: 10.1016/j.jelechem.2019.113301
    [17] 窦元运, 罗民, 梁森, 等. 电泳沉积耦合电化学还原法制备柔性石墨烯自支撑薄膜电极超级电容器[J]. 中国有色金属学报: 英文版, 2014, 24(5):1425-1433. doi: 10.1016/S1003-6326(14)63208-8

    DOU Yuanyun, LUO Min, LIANG Sen, et al. Preparation of flexible graphene self-supporting film electrode super-capacitors by electrophoretic deposition coupled with electrochemical reduction[J]. The Chinese Journal of Nonferrous Metals: English Edition,2014,24(5):1425-1433(in Chinese). doi: 10.1016/S1003-6326(14)63208-8
    [18] LAURENT Schlur, KARINE Bonnot, DENIS Spitzer. Synthesis of Cu(OH)2 and CuO nanotubes arrays on a silicon wafer[J]. RSC Advances,2015,5:6061-6070. doi: 10.1039/C4RA10155C
    [19] WU Yuanzhan, LIU Suqin, ZHAO Kuangmin, et al. Chemical deposition of MnO2 nanosheets on graphene-carbon nanofiber paper as free-standing and flexible electrode for supercapacitors[J]. Ionics,2016,22(7):1185-1195. doi: 10.1007/s11581-015-1625-6
    [20] 辛国祥, 王蒙蒙, 翟耀, 等. 一步法合成具有优异循环性能的聚苯胺纳米线/自支撑石墨烯复合材料[J]. 复合材料学报, 2021, 38(4):1-11.

    XIN Guoxiang, WANG Mengmeng, ZHAI Yao, et al. One-step synthesis of polyaniline nanowire/self-supported graphene composite with excellent cycling stability[J]. Acta Materiae Compositae Sinica,2021,38(4):1-11(in Chinese).
    [21] 张鹏, 刘洋, 陈明华, 等. 高性能自支撑CuS/SnS2锂电池负极材料[J]. 复合材料学报, 2021, 38(3):871-878.

    ZHANG Peng, LIU Yang, CHEN Minghua, et al. High-performance self-supporting CuS/SnS2 lithium battery anode material[J]. Acta Materiae Compositae Sinica,2021,38(3):871-878(in Chinese).
    [22] 施萍萍, 王金杰, 任芝龙, 等. 自支撑的活性碳布/MnO2/碳纳米管/聚苯胺复合电极用于高性能超级电容器的研究[J]. 化工新型材料, 2020, 48(2):121-124.

    SHI Pingping, WANG Jinjie, REN Zhilong, et al. Research on self-supporting activated carbon cloth/MnO2/carbon nanotube/polyaniline composite electrode for high-performance supercapacitors[J]. New Chemical Materials,2020,48(2):121-124(in Chinese).
    [23] LI Dan, LAN Wei, LIU Zhongqing, et al. Powder sintered Ni–P/CNTs composites as three-dimensional self-supported efficient electrocatalysts for hydrogen evolution reaction[J]. Journal of Alloys and Compounds,2020,825:153920. doi: 10.1016/j.jallcom.2020.153920
    [24] STEEVE Rousselot, PHILIPPE Antitomaso, LAURENCE Savignac, et al. PEDOT assisted CNT self-supported electrodes for high energy and power density[J]. Electrochimica Acta,2020,349:136418. doi: 10.1016/j.electacta.2020.136418
    [25] ZHU Fangfang, LIU Weijing, LIU Yu, et al. Construction of porous interface on CNTs@NiCo-LDH core-shell nano-tube arrays for supercapacitor applications[J]. Chemical Engineering Journal,2020,383:123150. doi: 10.1016/j.cej.2019.123150
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  1069
  • HTML全文浏览量:  393
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 录用日期:  2021-01-04
  • 网络出版日期:  2021-01-11
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回