留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大厚度复合材料曲面典型构件的工艺优化

马彦旭 王继辉 倪爱清 杨斌 彭运松

马彦旭, 王继辉, 倪爱清, 等. 大厚度复合材料曲面典型构件的工艺优化[J]. 复合材料学报, 2021, 38(10): 3302-3313. doi: 10.13801/j.cnki.fhclxb.20201229.005
引用本文: 马彦旭, 王继辉, 倪爱清, 等. 大厚度复合材料曲面典型构件的工艺优化[J]. 复合材料学报, 2021, 38(10): 3302-3313. doi: 10.13801/j.cnki.fhclxb.20201229.005
MA Yanxu, WANG Jihui, NI Aiqing, et al. Process optimization of typical composite cambered components with large thickness[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3302-3313. doi: 10.13801/j.cnki.fhclxb.20201229.005
Citation: MA Yanxu, WANG Jihui, NI Aiqing, et al. Process optimization of typical composite cambered components with large thickness[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3302-3313. doi: 10.13801/j.cnki.fhclxb.20201229.005

大厚度复合材料曲面典型构件的工艺优化

doi: 10.13801/j.cnki.fhclxb.20201229.005
基金项目: 科工局基础科研项目(JCKY2018207B204)
详细信息
    通讯作者:

    倪爱清,博士,副研究员,硕士生导师,研究方向为树脂基复合材料性能及模拟仿真  E-mail:ani@whut.edu.cn

  • 中图分类号: TB332

Process optimization of typical composite cambered components with large thickness

  • 摘要: 大厚度复合材料的数值仿真存在缺乏实尺度验证、数值模型待优化等问题。本文针对真空辅助树脂传递模塑成型的大厚度复合材料曲面构件,通过大型风电叶片主梁的工艺仿真与实尺度实验验证,进行了工艺设计与工艺参数模型预测。首先对比研究了不同的工艺仿真方案;然后利用所选优化方案对树脂灌注方案进行工艺设计,并进行了实验验证;最后,提出了不同厚度制件的工艺参数预测模型。结果表明:所选优化方案可同时得到理想的计算效率和流动模拟结果;所设计工艺方案与实验吻合性良好;工艺参数预测模型所得结果与模拟结果基本一致。

     

  • 图  1  大厚度复合材料真空灌注工艺优化流程

    Figure  1.  Optimization process of vacuum infusion for large-thickness composite materials

    图  2  大厚度复合材料曲面构件模型

    Figure  2.  Structure of composite cambered component of large thickness

    图  3  大厚度复合材料曲面制件成型实验

    Figure  3.  Forming experiment of composite cambered component of large thickness

    图  4  大厚度复合材料曲面制件四种仿真模型模拟结果云图对比

    Figure  4.  Comparison of simulation results of four simulation models of composite cambered component of large thickness

    图  5  导流网的铺放位置

    Figure  5.  Laying ways of flow medium

    图  6  导流网不同铺设方式的大厚度复合材料曲面制件模拟结果

    Figure  6.  Simulation results of composite cambered component of large thickness with different laying of flow medium

    图  7  树脂黏度与时间关系

    Figure  7.  Relation of resin viscosity and time

    图  8  不同时刻树脂流动情况对比

    Figure  8.  Flow comparison of resin at different moments

    图  9  大厚度复合材料曲面制件模拟与实验的流动前沿位置对比

    Figure  9.  Comparison of flow front position of composite cambered component of large thickness in simulation and experiment

    图  10  不同厚度复合材料曲面试样模拟结果对比

    Figure  10.  Comparison of simulation results of composite cambered component samples with different thickness

    图  11  树脂交汇处位置与纤维层数关系

    Figure  11.  Relationship of resin junction and number of layers

    图  12  46层纤维大厚度复合材料曲面试样孔隙计算结果与制件表观图

    Figure  12.  Pore calculation results and sample appearance of composite cambered component of large thickness with 46-layer fiber

    图  13  大厚度复合材料曲面制件模拟结果所得预测函数

    Figure  13.  Fitting function of simulation results of composite cambered component of large thickness

    表  1  实验材料

    Table  1.   Materials for experiment

    MaterialTypeDescription
    Glass fiber HUD 1240 H=0.72 mm; K=4.6×10−12 m2; Kz=1.77×10−13 m2
    Resin Epoxy resin Viscosity: 423-580 Pa·s
    Flow medium Permeability: 5.5×10−9 m2
    Consumable materials Unidirectional permeable film; Peel ply
    Notes: H—Thickness of fiber; K—In-plane permeability of fiber; Kz—Thickness directional permeability.
    下载: 导出CSV

    表  2  大厚度复合材料曲面制件四种仿真模型对比

    Table  2.   Comparison of four simulation models of composite cambered component of large thickness

    ModelDimensionMeshing methodMeshing typeElement layers in thickness direction
    1 2D Auto mesh Triangle 5
    2 3D Laminate Tetrahedron 47
    3 3D Laminate+layer mesh Tetrahedron 47/35/25/18/12/6
    4 3D Layer mesh Tetrahedron 5
    下载: 导出CSV

    表  3  大厚度复合材料曲面制件模型3模拟结果对比(46 层)

    Table  3.   Comparison of simulation result of model 3 of composite cambered component of large thickness (46 layers)

    Number of part47352418126
    Filling time/s 5 928 6 240 6 281 6 297 6 350 6 151
    Elements/thousand 2 150 1 600 1 130 780 550 270
    CPU time/min 182 137 63 44 35 27
    下载: 导出CSV

    表  4  大厚度复合材料曲面制件模型3模拟结果对比(30层)

    Table  4.   Comparison of simulation results of model 3 of composite cambered component of large thickness (30 layers)

    Number of laminate31262116116
    Filling time/s 3 616 3 633 3 727 3 739 3 757 3 691
    Element/thousand 1 420 1 190 960 730 500 270
    CPU time/min 130 101 76 40 28 24
    下载: 导出CSV

    表  5  大厚度复合材料曲面制件不同模拟方案对比(46层)

    Table  5.   Comparison of different simulation schemes of composite cambered component of large thickness (46 layers)

    Model234
    Filling time/s 6498 6151 6261
    CPU time/min 170 27 44
    下载: 导出CSV
  • [1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):12.

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):12(in Chinese).
    [2] DING A, LI S, WANG J, et al. A new path-dependent constitutive model predicting cure-induced distortions in composite structures[J]. Composites Part A: Applied Science and Manufacturing,2017,95:183-196. doi: 10.1016/j.compositesa.2016.11.032
    [3] DING A, LI S, WANG J, et al. A new analytical solution for spring-in of curved composite parts[J]. Composites Science and Technology,2017,142:30-40. doi: 10.1016/j.compscitech.2017.01.024
    [4] 张浩, 李书欣, 王继辉, 等. 基于新型测试装置的网孔板层开孔率对纤维厚度方向渗透率的影响[J]. 复合材料学报, 2020, 37(5):1175-1183.

    ZHANG Hao, LI Shuxin, WANG Jihui, et al. Influence of the ratio of hole area for mesh plate layer on through-thickness permeability based on a new designed test bench[J]. Acta Materiae Compositae Sinica,2020,37(5):1175-1183(in Chinese).
    [5] 张保丰, 杨汉嵩, 刘建秀. 风电叶片材料的研制[J]. 铸造技术, 2011, 32(12):1721-1723.

    ZHANG Baofeng, YANG Hansong, LIU Jianxiu. Development of wind turbine blade materials[J]. Foundry Technology,2011,32(12):1721-1723(in Chinese).
    [6] BICKERTON S, ADVANI S G. Experimental investigation and flow visualization of the resin-transfer mold-filling process in a non-planar geometry[J]. Composites ence & Technology,1997,57(1):23-33.
    [7] GRSSING H, STADLMAJER N, FAUSTER E, et al. Flow front advancement during composite processing: Predictions from numerical filling simulation tools in comparison with real-world experiments[J]. Polymer Composites,2016,37(9):2782-2793. doi: 10.1002/pc.23474
    [8] DONG C H. Development of a process model for the vacuum assisted resin transfer molding simulation by the response surface method[J]. Composites: Part A: Applied Science and Manufacturing,2006,37:1316-1324. doi: 10.1016/j.compositesa.2005.08.012
    [9] 李海晨, 王彪, 周振功. RTM工艺树脂流动过程数值模拟[J]. 复合材料学报, 2002, 19(2):18-23. doi: 10.3321/j.issn:1000-3851.2002.02.003

    LI Haichen, WANG Biao, ZHOU Zhengong. Numerical simulation of resin flow in RTM[J]. Acta Materiae Compositae Sinica,2002,19(2):18-23(in Chinese). doi: 10.3321/j.issn:1000-3851.2002.02.003
    [10] KUANG T H, MATHIEU D, SURESH G A. Simulation based flow distribution network optimization for vacuum assisted resin transfer moulding process[J]. Modelling & Simulation in Materials ence&Engineering,2004,12(3):119-129.
    [11] 汤扬阁. 真空辅助成型工艺制作风机叶片工艺设计的充模模拟[D]. 呼和浩特: 内蒙古工业大学, 2013.

    TANG Yangge. Modeling and simulation of the VARI process for wind turbine blades process design[D]. Huhhot: Inner Mongolia University, 2013(in Chinese).
    [12] SIMACEK P, ADWANI S G. Modeling resin flow and fiber tow saturation induce by distribution media collapse in VARTM[J]. Composites Science and Technology,2007,67(13):2757-2769. doi: 10.1016/j.compscitech.2007.02.008
    [13] 苏跃增, 纵海, 曹均助, 等. VARI工艺制备典型平面及曲面构件的流道设计模拟研究[J]. 材料工程, 2009 (A2):1-3. doi: 10.3969/j.issn.1001-4381.2009.12.001

    SU Yuezeng, ZONG Hai, CAO Junzhu, et al. Study on simulation of flow channel design in manufacturing typical plane and surface parts by using VARI process[J]. Journal of Materials Engineering,2009 (A2):1-3(in Chinese). doi: 10.3969/j.issn.1001-4381.2009.12.001
    [14] 成天建, 鲁先孝, 张兴刚. 复合材料增强纤维渗透率测量及VARI成型工艺仿真计算[J]. 工程塑料应用, 2011, 39(7):38-41. doi: 10.3969/j.issn.1001-3539.2011.07.010

    CHENG Tianjian, LU Xianxiao, ZHANG Xinggang. Research on composites reinforced fiber permeability measuring and VARI process simulation[J]. Engineering Plastics Application,2011,39(7):38-41(in Chinese). doi: 10.3969/j.issn.1001-3539.2011.07.010
    [15] 王德盼. 纤维增强复合材料VARTM工艺树脂充填模拟及实验研[D]. 南昌: 南昌大学, 2014.

    WANG Depan. Numerical simulation and experiment study on resin filling of fiber reinforced composites with VARTM process[D]. Nanchang: Nanchang University, 2014(in Chinese).
    [16] 孙玉敏, 段跃新, 李丹, 等. 风机叶片RTM工艺模拟分析及其优化[J]. 复合材料学报, 2005, 22(4):23-29. doi: 10.3321/j.issn:1000-3851.2005.04.005

    SUN Yumin, DUAN Yuexin, LI Dan, etl. Computer simulation analysis and optimization for wind turbine blade[J]. Acta Materiae Compositae Sinica,2005,22(4):23-29(in Chinese). doi: 10.3321/j.issn:1000-3851.2005.04.005
    [17] VERLEYE B, ROOSE D, LOMOV S V, et al. Computation of permeability of textile reinforcement[C]. The 9th International Conference on Masterial Forming Esaform. 2006: 735-738.
    [18] KUPPUSAMY R R P, NEOGI S. Simulation of air entrapment and resin curing during manufacturing of composite cab front by resin transfer moulding process[J]. Archives of Metallurgy and Materials,2017,62(3):1839-1844. doi: 10.1515/amm-2017-0278
    [19] 赖家美, 王德盼, 陈显明, 等. VARTM工艺中高渗透导流介质对树脂充填行为的影响[J]. 高分子材料科学与工程, 2014, 30(7):120-125.

    LAI Jiamei, WANG Depan, CHEN Xianming, et al. Effects of high-permeability medium on resin filling behavior in vacuum assisted resin transfer molding process[J]. Polymer Materials Science & Engineering,2014,30(7):120-125(in Chinese).
    [20] 王浩军, 王林文, 赵安安, 等. 复合材料带筋壁板预成型体压缩性与渗透性对树脂流动的影响[J]. 复合材料学报, 2019, 36(4):811-825.

    WANG Haojun, WANG Linwen, ZHAO An’an, et al. Effect of compaction and permeability of the composite stiffened panel preform on resin flow[J]. Acta Materiae Compositae Sinica,2019,36(4):811-825(in Chinese).
    [21] CLAUDIO D F, SUN Y, PHILIPPE C, et al. A dimensionless characteristic number for process selection and mold design in composites manufacturing: Part I—Theory[J]. Journal of Composite Science,2020,4(11):1-15.
    [22] LABAT L, BREARD J, PILLUT L S. Void formation prevision in LCM parts[J]. European Physical Journal Applied Phy-sics,2001,16(2):157-164. doi: 10.1051/epjap:2001104
    [23] PATEL N, LEE L J. Modeling of void formation in liquid composite molding. Part Ⅱ: Model development and impregnation[J]. Polymer Composites,1996,17(1):104-114. doi: 10.1002/pc.10595
    [24] PATEL N, LEE L J. Modeling of void formation in liquid composite molding:Part Ⅰ—Wettability analysis[J]. Polymer Composites,1996,17(1):96-103. doi: 10.1002/pc.10594
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  677
  • HTML全文浏览量:  238
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 录用日期:  2020-12-19
  • 网络出版日期:  2020-12-29
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回