留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米填料增强硝酸盐复合材料传储热性能的研究进展

吴晨光 李蓓

吴晨光, 李蓓. 纳米填料增强硝酸盐复合材料传储热性能的研究进展[J]. 复合材料学报, 2021, 38(7): 2001-2009. doi: 10.13801/j.cnki.fhclxb.20201218.001
引用本文: 吴晨光, 李蓓. 纳米填料增强硝酸盐复合材料传储热性能的研究进展[J]. 复合材料学报, 2021, 38(7): 2001-2009. doi: 10.13801/j.cnki.fhclxb.20201218.001
WU Chenguang, LI Bei. Progress on heat transfer and storage performance of nano-filler reinforced nitrate composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2001-2009. doi: 10.13801/j.cnki.fhclxb.20201218.001
Citation: WU Chenguang, LI Bei. Progress on heat transfer and storage performance of nano-filler reinforced nitrate composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2001-2009. doi: 10.13801/j.cnki.fhclxb.20201218.001

纳米填料增强硝酸盐复合材料传储热性能的研究进展

doi: 10.13801/j.cnki.fhclxb.20201218.001
基金项目: 华中科技大学材料成形与模具技术国家重点实验室开放课题研究基金(P2021-009)
详细信息
    通讯作者:

    李蓓,博士,副教授,博士生导师,研究方向为高分子、金属及纳米复合材料计算模拟 E-mail:libei@whut.edu.cn

  • 中图分类号: TB332

Progress on heat transfer and storage performance of nano-filler reinforced nitrate composites

  • 摘要: 硝酸盐凭借成本低、工作温度范围广等优点作为储热介质被广泛应用于聚光太阳能热发电系统。向硝酸盐中掺入纳米填料会使其传储热性能显著提高,可有效提高太阳能光热发电系统的发电效率。本文介绍了常见硝酸盐基纳米复合材料组分及制备方法,分析了纳米填料掺杂浓度和尺寸对硝酸盐纳米复合材料传储热性能的影响及其增强机制,最后指明硝酸盐纳米复合材料未来的研究方向。

     

  • 图  1  两步水溶液法(a)[21]和高温熔融法(b)[24]示意图

    Figure  1.  Schematics of two steps aqueous solution preparation method (a)[21] and high temperature melting process method (b)[24]

    图  2  三种比热容增强机制示意图[21]

    Figure  2.  Schematics of three mechanisms for specific heat capacity enhancement[21]

    图  3  针状结构形成机制示意图[37]

    Figure  3.  Schematics of formation mechanism of needle-like structure[37]

    图  4  纯盐(a)和针状结构的SEM图像(b)、针状结构的背散射电子显微镜(BSE)图像(c)及改变pH值后复合材料的SEM图像(d)[38]

    Figure  4.  SEM image of pure salt (a) and needle-like structure (b), BSE image of needle-like structure (c), SEM image of composites after changing pH (d)[38]

    图  5  Solar salt中针状纳米结构的SEM图像[55]

    Figure  5.  SEM images of needle-like nanostructure in Solar salt[55]

  • [1] 王辉. 太阳能光热发电系统中储热材料研究进展[J]. 科技信息, 2013(3):399-400. doi: 10.3969/j.issn.1001-9960.2013.03.308

    WANG Hui. Research progress of heat storage materials in solar photovoltaic power generation system[J]. Science and Technology Information,2013(3):399-400(in Chinese). doi: 10.3969/j.issn.1001-9960.2013.03.308
    [2] 袁炜东. 国内外太阳能光热发电发展现状及前景[J]. 电力与能源, 2015, 36(4):487-490.

    YUAN Weidong. Current development and prospect of solar-thermal power generation in China and abroad[J]. Power & Energy,2015,36(4):487-490(in Chinese).
    [3] 张宏韬, 赵有璟, 张萍, 等. 硝酸熔盐储热材料在太阳能利用中的研究进展[J]. 材料导报, 2015, 29(1):54-60. doi: 10.11896/j.issn.1005-023X.2015.01.009

    ZHANG Hongtao, ZHAO Youjing, ZHANG Ping, et al. Research progress of molten nitrate salts with application to solar energy utilization[J]. Materials Review,2015,29(1):54-60(in Chinese). doi: 10.11896/j.issn.1005-023X.2015.01.009
    [4] 武延泽, 王敏, 李锦丽, 等. 纳米材料改善硝酸熔盐传蓄热性能的研究进展[J]. 材料工程, 2020, 48(1):10-18.

    WU Yanze, WANG Min, LI Jinli, et al. Research progress in improving heat transfer and heat storage performance of molten nitrate by nanomaterials[J]. Journal of Materials Engineering,2020,48(1):10-18(in Chinese).
    [5] NUNES V, QUEIRÓS C S, LOURENÇO M, et al. Molten salts as engineering fluids: A review Part I: Molten alkali nitrates[J]. Applied Energy,2016,183:603-611. doi: 10.1016/j.apenergy.2016.09.003
    [6] LU J, DING J, YANG J. Filling dynamics and phase change of molten salt in cold receiver pipe during initial pumping process[J]. International Journal of Heat and Mass Transfer,2013,64:98-107. doi: 10.1016/j.ijheatmasstransfer.2013.04.021
    [7] NI H, WU J, SUN Z, et al. Molecular simulation of the structure and physical properties of alkali nitrate salts for thermal energy storage[J]. Renewable energy,2019,136:955-967. doi: 10.1016/j.renene.2019.01.044
    [8] FERNÁNDEZ A G, PÉREZ F J. Improvement of the corrosion properties in ternary molten nitrate salts for direct energy storage in CSP plants[J]. Solar Energy,2016,134:468-478. doi: 10.1016/j.solener.2016.05.030
    [9] FERNÁNDEZ A G, USHAK S, GALLEGUI-LLOS H, et al. Thermal characterisation of an innovative quaternary molten nitrate mixture for energy storage in CSP plants[J]. Solar Energy Materials and Solar Cells,2015,132:172-177. doi: 10.1016/j.solmat.2014.08.020
    [10] CORDARO J G, RUBIN N C, BRADSHAW R W. Multicomponent molten salt mixtures based on nitrate/nitrite anions[J]. Journal of Solar Energy Engineering,2011,133(1):011014.
    [11] MYERS J P D, ALAM T E, KAMAL R, et al. Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer[J]. Applied Energy,2016,165:225-233. doi: 10.1016/j.apenergy.2015.11.045
    [12] LASFARGUES M, BELL A, DING Y. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications[J]. Journal of Nanoparticle Research,2016,18(6):150. doi: 10.1007/s11051-016-3460-8
    [13] BETTS M R. The effects of nanoparticle aug-mentation of nitrate thermal storage materials for use in concentrating solar power applications[D]. Texas: Texas A & M University, 2011.
    [14] BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [15] FUJII M, ZHANG X, XIE H, et al. Measuring the thermal conductivity of a single carbon nanotube[J]. Physical Review Letters,2005,95(6):65502. doi: 10.1103/PhysRevLett.95.065502
    [16] JO B, BANERJEE D. Effect of dispersion homogeneity on specific heat capacity enhancement of molten salt nanomaterials using carbon nanotubes[J]. Journal of Solar Energy Engineering,2015,137(1):011011.
    [17] SARANPRABHU M K, RAJAN K S. Enhancement of solid-phase thermal conductivity and specific heat of solar salt through addition of MWCNT: New observations and implications for thermal energy storage[J]. Applied Nanoscience,2019,9(8):2117-2126. doi: 10.1007/s13204-019-01107-0
    [18] AHMED S F, KHALID M, WALVEKAR R, et al. Investigating the effect of graphene on eutectic salt properties for thermal energy storage[J]. Materials Research Bulletin,2019,119:110568. doi: 10.1016/j.materresbull.2019.110568
    [19] CUI X, CHENG X, XU H, et al. Enhancement of thermophysical coefficients in nanofluids: A simulation study[J]. International Journal of Modern Physics B,2020,34(25):2050222. doi: 10.1142/S0217979220502227
    [20] ANDREU P, MONDRAGON R, HERNANDEZ L, et al. Increment of specific heat capacity of solar salt with SiO2 nanoparticles[J]. Nanoscale Research Letters,2014,9(1):582. doi: 10.1186/1556-276X-9-582
    [21] SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer,2011,54(5-6):1064-1070. doi: 10.1016/j.ijheatmasstransfer.2010.11.017
    [22] 吴玉庭, 张璐迪, 马重芳, 等. 纳米SiO2 在低熔点熔盐中的分散对其比热容的影响[J]. 北京工业大学学报, 2016, 42(8):1259-1264.

    WU Yuting, ZHANG Ludi, MA Chongfang, et al. Effect of nano-SiO2 dispersion on its specific heat capacity in molten salt with low melting point[J]. Journal of Beijing Polytechnic University,2016,42(8):1259-1264(in Chinese).
    [23] 任曼飞. 用于高温蓄热介质的二氧化硅纳米颗粒/三元碳酸盐复合熔盐纳米流体的制备方法对比[J]. 材料导报, 2018, 32(23):4067-4071. doi: 10.11896/j.issn.1005-023X.2018.23.006

    REN Manfei. Silica nanoparticles/ternary carbonate composite molten salt nanofluid serving as high-temperature heat storage medium: A comparative study on the preparation methodology[J]. Materials Review,2018,32(23):4067-4071(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.23.006
    [24] HUANG Y, CHENG X, LI Y, et al. Effect of in-situ synthesized nano-MgO on thermal properties of NaNO3-KNO3[J]. Solar Energy,2018,160:208-215. doi: 10.1016/j.solener.2017.11.077
    [25] CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials and Solar Cells,2017,167:60-69. doi: 10.1016/j.solmat.2017.04.011
    [26] CHENG X, HUANG Y, WANG X, et al. Preparation and properties of in-situ synthesized nanoparticles in NaNO3-KNO3[J]. AIP Conference Proceedings, 2019, 2126(1): 200011.
    [27] XIE Q, ZHU Q, LI Y. Thermal storage properties of molten nitrate salt-based nanofluids with graphene nanoplatelets[J]. Nanoscale Research Letters,2016,11(1):1-7. doi: 10.1186/s11671-015-1209-4
    [28] HU Y, HE Y, ZHANG Z, et al. Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage[J]. Solar Energy Materials and Solar Cells,2019,192:94-102. doi: 10.1016/j.solmat.2018.12.019
    [29] HU Y, HE Y, ZHANG Z, et al. Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications[J]. Energy Conversion and Management,2017,142:366-373. doi: 10.1016/j.enconman.2017.03.062
    [30] HO M X, PAN C. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity[J]. International Journal of Heat and Mass Transfer,2014,70:174-184. doi: 10.1016/j.ijheatmasstransfer.2013.10.078
    [31] LIU S, WU D, LIU J, et al. Development of a novel molten-salt filled with nanoparticles for concentration solar plants[C]//2nd IET Renewable Power Generation Conference. Beijing: IET, 2013.
    [32] LI Y, CHEN X, WU Y, et al. Experimental study on the effect of SiO2 nanoparticle dispersion on the thermophysical properties of binary nitrate molten salt[J]. Solar Energy,2019,183:776-781. doi: 10.1016/j.solener.2019.03.036
    [33] LU M, HUANG C. Specific heat capacity of molten salt-based alumina nanofluid[J]. Nanoscale Research Letters,2013,8(1):1-7. doi: 10.1186/1556-276X-8-1
    [34] HAN Z, RAM M K, KAMAL R, et al. Characterization of molten salt doped with different size nanoparticles of Al2O3[J]. International Journal of Energy Research,2019,43(8):3732-3745. doi: 10.1002/er.4531
    [35] QIAO G, LASFARGUES M, ALEXIADIS A, et al. Simulation and experimental study of the specific heat capacity of molten salt based nanofluids[J]. Applied Thermal Engineering,2017,111:1517-1522. doi: 10.1016/j.applthermaleng.2016.07.159
    [36] QIAO G, ALEXIADIS A, DING Y. Simulation study of anomalous thermal properties of molten nitrate salt[J]. Powder Technology,2017,314:660-664. doi: 10.1016/j.powtec.2016.11.019
    [37] SHIN D, TIZNOBAIK H, BANERJEE D. Specific heat mechanism of molten salt nanofluids[J]. Applied Physics Letters,2014,104(12):121914. doi: 10.1063/1.4868254
    [38] TIZNOBAIK H, SHIN D. Experimental validation of enhanced heat capacity of ionic liquid-based nanomaterial[J]. Applied Physics Letters,2013,102(17):173906. doi: 10.1063/1.4801645
    [39] SEO J, MOSTAFAVI A, SHIN D. Molecular dynamics study of enhanced specific heat by molten salt eutectic (Li2CO3-K2CO3) doped with SiO2 nanoparticles[J]. International Journal for Multiscale Computational Engineering,2018,16(4):321-333.
    [40] MONDRAGÓN R, JULIÁ J E, CABEDO L, et al. On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles[J]. Scientific Reports,2018,8(1):1-12. doi: 10.1038/s41598-017-17765-5
    [41] XIAO J, HUANG J, ZHU P, et al. Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material[J]. Thermochimica Acta,2014,587:52-58. doi: 10.1016/j.tca.2014.04.021
    [42] WEI X, YIN Y, QIN B, et al. Thermal conductivity improvement of liquid nitrate and carbonate salts doped with MgO particles[J]. Energy Procedia,2017,142:407-412. doi: 10.1016/j.egypro.2017.12.064
    [43] WU Y, LI J, WANG M, et al. Preparation and thermophysical properties of high thermal conductive solar salt/MWCNTs composite materials[J]. ChemistrySelect,2019,4(15):4521-4527. doi: 10.1002/slct.201900249
    [44] WU Y, LI J, WANG M, et al. Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP[J]. RSC Advances,2018,8(34):19251-19260. doi: 10.1039/C8RA03019G
    [45] XIAO X, ZHANG P, LI M. Thermal characterization of nitrates and nitrates/expanded graphite mixture phase change materials for solar energy storage[J]. Energy Conversion and Management,2013,73:86-94. doi: 10.1016/j.enconman.2013.04.007
    [46] UEKI Y, FUJITA N, KAWAI M, et al. Thermal conductivity of molten salt-based nanofluid[J]. AIP Advances,2017,7(5):55117. doi: 10.1063/1.4984770
    [47] WEI X, YIN Y, QIN B, et al. Preparation and enhanced thermal conductivity of molten salt nanofluids with nearly unaltered viscosity[J]. Renewable Energy,2020,145:2435-2444. doi: 10.1016/j.renene.2019.04.153
    [48] HOSSAIN N, AFRIN S, ORTEGA J D, et al. Numerical analysis of total energy storage of nanofluidized heat transfer fluid in thermocline thermal energy storage system[C]//ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. Boston: ASME, 2014.
    [49] NITHIYANANTHAM U, ZAKI A, GROSU Y, et al. SiO2@ Al2O3 core-shell nanoparticles based molten salts nanofluids for thermal energy storage applications[J]. Journal of Energy Storage,2019,26:101033. doi: 10.1016/j.est.2019.101033
    [50] NITHIYANANTHAM U, GONZÁLEZ L, GROSU Y, et al. Shape effect of Al2O3 nanoparticles on the thermophysical properties and viscosity of molten salt nanofluids for TES application at CSP plants[J]. Applied Thermal Engineering,2020,169:114942. doi: 10.1016/j.applthermaleng.2020.114942
    [51] MAHMOUD B H, MORTIMER L F, FAIRWEATHER M, et al. Thermal conductivity prediction of molten salt-based nanofluids for energy storage applications[M]//Computer Aided Chemical Engineering. Elsevier, 2019: 601-606.
    [52] SEDIGHI M, MOHEBBI A. Investigation of nanoparticle aggregation effect on thermal properties of nanofluid by a combined equilibrium and non-equilibrium molecular dynamics simulation[J]. Journal of Molecular Liquids,2014,197:14-22. doi: 10.1016/j.molliq.2014.04.019
    [53] 赵国昌, 曹磊, 宋丽萍, 等. 纳米流体导热机理研究分析[J]. 沈阳航空航天大学学报, 2013, 30(4):7-11. doi: 10.3969/j.issn.2095-1248.2013.04.002

    ZHAO Guochang, CAO Lei, SONG Liping, et al. Analysis of research on heat conduction mechanisms of nanofluids[J]. Journal of Shenyang Aerospace University,2013,30(4):7-11(in Chinese). doi: 10.3969/j.issn.2095-1248.2013.04.002
    [54] LI Z, CUI L, LI B, et al. Enhanced heat conduction in molten salt containing nanoparticles: Insights from molecular dynamics[J]. International Journal of Heat and Mass Transfer,2020,153:119578. doi: 10.1016/j.ijheatmasstransfer.2020.119578
    [55] MA B, BANERJEE D. Experimental measurements of thermal conductivity of alumina nanofluid synthesized in salt melt[J]. AIP Advances,2017,7(11):115124. doi: 10.1063/1.5007885
  • 加载中
图(5)
计量
  • 文章访问数:  812
  • HTML全文浏览量:  425
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 录用日期:  2020-12-14
  • 网络出版日期:  2020-12-18
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回