留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于频率变化预测玻璃纤维增强树脂复合材料层合板的剩余疲劳寿命

廖兴升 梁智洪 傅继阳 江剑 王财政 张芝芳

廖兴升, 梁智洪, 傅继阳, 等. 基于频率变化预测玻璃纤维增强树脂复合材料层合板的剩余疲劳寿命[J]. 复合材料学报, 2021, 38(10): 3323-3337. doi: 10.13801/j.cnki.fhclxb.20201215.010
引用本文: 廖兴升, 梁智洪, 傅继阳, 等. 基于频率变化预测玻璃纤维增强树脂复合材料层合板的剩余疲劳寿命[J]. 复合材料学报, 2021, 38(10): 3323-3337. doi: 10.13801/j.cnki.fhclxb.20201215.010
LIAO Xingsheng, LIANG Zhihong, FU Jiyang, et al. Prediction of remaining fatigue life of glass fiber reinforced polymer laminates based on frequency change[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3323-3337. doi: 10.13801/j.cnki.fhclxb.20201215.010
Citation: LIAO Xingsheng, LIANG Zhihong, FU Jiyang, et al. Prediction of remaining fatigue life of glass fiber reinforced polymer laminates based on frequency change[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3323-3337. doi: 10.13801/j.cnki.fhclxb.20201215.010

基于频率变化预测玻璃纤维增强树脂复合材料层合板的剩余疲劳寿命

doi: 10.13801/j.cnki.fhclxb.20201215.010
基金项目: 广东省自然科学基金(2019A1515011116);广州市“121人才梯队工程”后备人才项目
详细信息
    通讯作者:

    张芝芳,博士,副研究员,硕士生导师,研究方向为复合材料结构健康监测和疲劳寿命评估  E-mail:zfzhang@gzhu.edu.cn

  • 中图分类号: TB332;TQ327.1

Prediction of remaining fatigue life of glass fiber reinforced polymer laminates based on frequency change

  • 摘要: 复合材料结构在疲劳过程中的累积损伤将导致结构刚度下降,并进一步引起结构的动态参数如频率发生衰减。因此,可以将结构疲劳状态与结构频率联系起来,基于频率预测结构的剩余疲劳寿命。本文首先基于复合材料在纵向、横向和面内剪切三个方向的疲劳特性,结合ABAQUS与Umat子程序开发了三维有限元模型模拟复合材料层合板中的疲劳损伤演变,并构建了不同疲劳状态下对应的模态分析模型,由此获得了疲劳过程中的频率衰减曲线。之后,基于疲劳过程的频率变化量训练了人工神经网络,用于预测玻璃纤维增强复合材料层合板的剩余疲劳寿命。特别地,在当前的数值模型中为每个单元分配了符合高斯正态分布的材料属性,以模拟实际情况下复合材料性能的离散性。结果表明,疲劳模型数值模拟结果与已有文献的疲劳实验数据吻合,基于频率变化量训练的人工神经网络可以成功预测玻璃纤维增强复合材料试件的剩余疲劳寿命。

     

  • 图  1  疲劳模型模拟流程

    Figure  1.  Simulation scheme of fatigue model

    图  2  玻璃纤维增强树脂复合材料(GFRP)层合板疲劳退化区域的有限元模型

    Figure  2.  FEM of fatigue degradation zone of glass fiber reinforced polymer (GFRP) plate

    图  3  [0]8 GFRP层合板未进行正态分布的疲劳模型

    Figure  3.  Fatigue model without normal distribution of [0]8 GFRP laminates

    图  4  [0]8 GFRP层合板进行正态分布的疲劳模型

    Figure  4.  Normally distributed fatigue model of [0]8 GFRP laminates

    图  5  六种铺层GFRP层合板的S-N曲线

    Figure  5.  S-N curves of six types of GFRP laminates

    图  6  六种GFRP层合板的剩余刚度曲线

    Figure  6.  Residual stiffness curves of six types of GFRP laminates

    图  7  模态模型建模流程

    Figure  7.  Built-up process of FE model for modal analysis

    图  8  不同分网密度下的[0]8 GFRP层合板

    Figure  8.  GFRP plate ([0]8) with different mesh densities

    图  9  [0]8 GFRP层合板振型图

    Figure  9.  [0]8 Vibration shape diagram of GFRP laminate

    图  10  GFRP层合板模态分析模型

    Figure  10.  FE model for modal analysis of GFRP laminate

    图  11  [0]8层合板0.6应力水平下剩余频率曲线

    Figure  11.  Residual frequency curves of [0]8 laminate under 0.6 stress level

    图  12  [90]8层合板0.5应力水平下剩余频率曲线

    Figure  12.  Residual frequency curves of [90]8 laminate under 0.5 stress level

    图  13  [45/−45/45/−45]S层合板0.5应力水平下剩余频率曲线

    Figure  13.  Residual frequency curves of [45/−45/45/−45]S laminate under 0.5 stress level

    图  14  [0/90/90/0]S层合板0.6应力水平下剩余频率曲线

    Figure  14.  Residual frequency curves of [0/90/90/0]S laminate under 0.6 stress level

    图  15  [45/0/0/−45]S层合板0.53应力水平下剩余频率曲线

    Figure  15.  Residual frequency curves of [45/0/0/−45]S laminate under 0.53 stress level

    图  16  [45/90/−45/0]S层合板0.55应力水平下剩余频率曲线

    Figure  16.  Residual frequency curves of [45/90/−45/0]S laminate under 0.55 stress level

    图  17  1#~4#GFRP层合板剩余频率曲线

    Figure  17.  Residual frequency curves of GFRP laminate 1#~4#

    图  18  GFRP层合板神经网络结构图

    Figure  18.  Neural network structure diagram of GFRP laminate

    图  19  GFRP层合板预测模型训练误差曲线

    Figure  19.  Training error curves of ANN model of GFRP laminate

    表  1  材料参数突降方案

    Table  1.   Degradation scheme of material parameters

    Failure modeParameter degradation scheme
    Fiber tensile failure ${E_{11}}$, ${E_{{\rm{22}}}}$, ${G_{1{\rm{2}}}}$, ${G_{{\rm{13}}}}$, ${G_{{\rm{23}}}}$, ${\nu_{1{\rm{2}}}}$, ${\nu_{{\rm{13}}}}$, ${\nu_{{\rm{23}}}}$ reduced to 0.07 times the initial value
    Fiber compressive failure ${E_{11}}$, ${E_{{\rm{22}}}}$, ${G_{1{\rm{2}}}}$, ${G_{{\rm{13}}}}$, ${G_{{\rm{23}}}}$, ${\nu_{1{\rm{2}}}}$, ${\nu_{{\rm{13}}}}$, ${\nu_{{\rm{23}}}}$ reduced to 0.14 times the initial value
    Matrix tensile failure ${E_{{\rm{22}}}}$, ${G_{1{\rm{2}}}}$, ${G_{{\rm{23}}}}$ reduced to 0.2 times the initial value
    Matrix compression failure ${E_{{\rm{22}}}}$, ${G_{1{\rm{2}}}}$, ${G_{{\rm{23}}}}$ reduced to 0.4 times the initial value
    Fiber/matrix shear failure ${G_{1{\rm{2}}}}$. ${\nu_{1{\rm{2}}}}$ reduced to 0.2 times the initial value
    Delamination failure ${E_{{\rm{33}}}}$, ${G_{{\rm{13}}}}$, ${G_{{\rm{23}}}}$, ${\nu_{{\rm{13}}}}$, ${\nu_{{\rm{23}}}}$ reduced to 0.2 times the initial value
    Notes: E11, E22, E33—Young’s moduli; G12, G13, G23—Shear moduli; ν11, ν12, ν23—Poisson’s ratios.
    下载: 导出CSV

    表  2  GFRP层合板试件的铺层角度与静拉伸强度[7]

    Table  2.   Layup and static tensile strength of GFRP laminate specimens[7]

    Sample No.Stacking sequenceStrength/MPa
    A [0]8 900
    B [90]8 36
    C [0/90/90/0]S 470
    D [45/−45/45/−45]S 118
    E [45/0/0/−45]S 592
    F [45/90/−45/0]S 372
    下载: 导出CSV

    表  3  GFRP层合板剩余刚度-剩余强度关联模型参数[7]

    Table  3.   Parameters for the correlated model of the remaining stiffness-remaining strength[7] for GFRP laminate

    ParameterMagnitude
    Longitudinal $u$ 0.8
    $v$ 60
    $a$ 0.25
    E11rc/E110 0.95
    Transverse $w$ 1.2s2−1.85s+0.85
    $u$ 0.6
    $v$ 2
    $a$ 80
    E22rc/E220(E33rc/E330) 0.9
    Shear $w$ 1.57s2−2.43s+1.12
    $u$ 0.5
    $v$ 0.3
    $a$ 15
    G12rc/G120 0.3
    $w$ 10.86s2−16.2s+7.3
    Note: E11rc/E110, E22rc/E220 (E33rc/E330), G12rc/G120—Ratio of critical residual stiffness to initial stiffness along longitudinal, transverse and shear direction, respectively.
    下载: 导出CSV

    表  4  不同分网下GFRP层合板的模态频率

    Table  4.   Modal frequencies of GFRP laminate under different mesh densities

    Mode No.1# mesh density-21140 elements/Hz2# mesh density -81800 elements/HzDiscrepancy between 1# and 2# mesh density/%
    1 699.4 699.32 0.01
    2 2379.6 2378.4 0.05
    3 5669 5664.8 0.07
    4 10141 10136 0.05
    5 14241 14240 0.01
    6 18097 18091 0.03
    7 23443 23426 0.07
    8 29688 29676 0.04
    下载: 导出CSV

    表  5  铝片的材料参数

    Table  5.   Material parameters of aluminum

    MaterialElastic
    modulus/MPa
    Poisson's
    ratio
    Density/
    (g·cm−3)
    Aluminum 70000 0.32 2.7
    下载: 导出CSV

    表  6  [0]8层合板0.6应力水平下最终寿命

    Table  6.   Fatigue life of [0]8 laminate under 0.6 stress level

    Number1#2#3#4#
    Fatigue life 36000 36000 33000 25000
    下载: 导出CSV

    表  7  神经网络预测3#GFRP层合板剩余疲劳寿命结果

    Table  7.   Neural network prediction of the remaining fatigue life of GFRP laminate 3#

    Abaqus simulation actual value Nr/%Neural network algorithm prediction ${N_{\rm{r}}}'$/%Prediction error ${N_{\rm{r}}}$−${N_{\rm{r}}}'$/%
    100.00 99.88 0.12
    96.97 97.16 −0.19
    93.94 94.36 −0.42
    87.88 88.59 −0.71
    81.82 82.90 −1.08
    75.76 77.02 −1.26
    69.70 71.29 −1.59
    60.61 62.61 −2.01
    51.52 53.92 −2.41
    42.42 45.05 −2.62
    36.36 39.01 −2.64
    27.27 30.18 −2.91
    18.18 21.38 −3.20
    9.09 13.29 −4.19
    3.03 6.12 −3.09
    0 0 0
    下载: 导出CSV
  • [1] NADERI M, MALIGNO A R. Fatigue life prediction of carbon/epoxy laminates by stochastic numerical simulation[J]. Composite Structures,2012,94(3):1052-1059. doi: 10.1016/j.compstruct.2011.11.013
    [2] ELLYIN F, EL-KADI H. A fatigue failure criterion for fiber reinforced composite laminae[J]. Composite Structures,1990,15(1):61-74. doi: 10.1016/0263-8223(90)90081-O
    [3] PLUMTREE A, CHENG G X. A fatigue damage parameter for off-axis unidirectional fibre-reinforced composites[J]. International Journal of Fatigue,1999,21(8):849-856. doi: 10.1016/S0142-1123(99)00026-2
    [4] SHOKRIEH M M, TAHERI-BEHROOZ F. A unified fatigue life model based on energy method[J]. Composite Structures,2006,75(1):444-450.
    [5] VARVANI-FARAHANI A, HAFTCHENARI H, PANBECHI M. An energy-based fatigue damage parameter for off-axis unidirectional FRP composites[J]. Composite Structures,2006,79(3):381-389.
    [6] SHOKRIEH M M. Progressive fatigue damage modeling of composite materials, Part Ⅰ: Modeling[J]. Journal of Composite Materials,2000,34(13):1056-1080.
    [7] LIAN W, YAO W. Fatigue life prediction of composite laminates by FEA simulation method[J]. International Journal of Fatigue,2010,32(1):123-133. doi: 10.1016/j.ijfatigue.2009.01.015
    [8] ABO-ELKHIER M, HAMADA A A, BAHEI EL-DEEN A. Prediction of fatigue life of glass fiber reinforced polyester composites using modal testing[J]. International Journal of Fatigue,2014,69:28-35. doi: 10.1016/j.ijfatigue.2012.10.002
    [9] 李丹卉. 拉-拉循环载荷下复合材料固有频率疲劳衰减规律研究[D]. 南京: 南京航空航天大学, 2019.

    LI D H. Research on natural frequency fatigue attenuation law of composite material under tension-tension cyclic load[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019(in Chinese).
    [10] 卢翔, 李顶河, 冯振宇, 等. 复合材料层合板刚度降理论模型研究[J]. 中国民航大学学报, 2008(2):21-24. doi: 10.3969/j.issn.1001-5590.2008.02.007

    LU X, LI D H, FENG Z Y, et al. Research on theoretical model of stiffness reduction of composite laminated plates[J]. Journal of Civil Aviation University of China,2008(2):21-24(in Chinese). doi: 10.3969/j.issn.1001-5590.2008.02.007
    [11] HAHN H T. On the behavior of composite laminates after initial failures[J]. Journal of Composite Materials,1974,8(3):288-305.
    [12] 王德, 金平, 刘鹏, 等. 基于刚度退化的复合材料层合板疲劳损伤模型的研究进展[J]. 材料导报, 2012, 26(23):120-123. doi: 10.3969/j.issn.1005-023X.2012.23.026

    WANG D, JIN P, LIU P, et al. Research progress on fatigue damage model of composite laminates based on stiffness degradation[J]. Materials Reports,2012,26(23):120-123(in Chinese). doi: 10.3969/j.issn.1005-023X.2012.23.026
    [13] 姚卫星, 宗俊达, 廉伟. 监测复合材料结构剩余疲劳寿命的剩余刚度方法[J]. 南京航空航天大学学报, 2012, 44(5):677-682. doi: 10.3969/j.issn.1005-2615.2012.05.012

    YAO W X, ZONG J D, LIAN W, et al. Residual stiffness method for monitoring remaining fatigue life of composite structure[J]. Journal of Nanjing University of Aeronautics and Astronautics,2012,44(5):677-682(in Chinese). doi: 10.3969/j.issn.1005-2615.2012.05.012
    [14] 郭霞, 迟海, 贺俊智, 等. 纤维增强复合材料胶接结构疲劳特性试验研究[J]. 实验力学, 2019, 34(6):1077-1084.

    GUO X, CHI H, HE J Z, et al. Experimental research on fatigue characteristics of fiber reinforced composite material bonded structure[J]. Journal of Experimental Mechanics,2019,34(6):1077-1084(in Chinese).
    [15] MOON T, KIM H, HWANG W. Natural-frequency reduction model for matrix-dominated fatigue damage of composite laminates[J]. Composite Structures,2003,62(1):19-26. doi: 10.1016/S0263-8223(03)00080-1
    [16] 刘英芝. 复合材料层合板疲劳行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    LIU Y Z. Research on fatigue behavior of composite laminate[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).
    [17] 王乐. 复合材料单向板刚度退化及数值仿真分析研究[D]. 南京: 南京航空航天大学, 2016.

    WANG L. Research and numerical simulation on composite unidirectional laminates stiffness reduction[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
    [18] LIU K, TSAI S W. A progressive quadratic failure criterion for a laminate[J]. Composites Science and Technology,1998,58(7):1023-1032. doi: 10.1016/S0266-3538(96)00141-8
    [19] HASHIN Z. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials,1973,7(4):448-464.
    [20] SIMS D, BROGDON V. Fatigue behaviour of composites under different loading modes. Fatigue of filamentary materials[J]. Fatigue Behavior of Composites under Different Loading Modes,1977,636:185-205.
    [21] FRANCIS P H. Biaxial fatigue loading of notched composites[J]. Journal of Composite Materials,1977,11(4):488-501.
    [22] PHILIPPIDIS T P, VASSILOPOULOS A P. Complex stress state effect on fatigue life of GFRP laminates[J]. International Journal of Fatigue,2002,24(8):825-830.
    [23] SHOKRIEH M M. Progressive fatigue damage modeling of composite materials, Part II: Material characterization and model verification[J]. Journal of Composite Materials,2000,34(13):1081-1161.
    [24] TSERPES K I, PAPANIKOS P, LABEAS G, et al. Fatigue damage accumulation and residual strength assessment of CFRP laminates[J]. Composite Structures,2004,63(2):219-230.
    [25] CHANG F, CHANG K. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials,1987,21(9):834-855. doi: 10.1177/002199838702100904
    [26] 廉伟, 姚卫星. 复合材料层压板剩余刚度-剩余强度关联模型[J]. 复合材料学报, 2008(5):151-156. doi: 10.3321/j.issn:1000-3851.2008.05.025

    LIAN W, YAO W X. Residual stiffness-residual strength correlation model of composite laminates[J]. Acta Materiae Compositae Sinica,2008(5):151-156(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.05.025
    [27] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials,1999,33(24):2248-2280. doi: 10.1177/002199839903302402
    [28] 华宏星, 陈小琳, 石银明. 运用神经网络识别复合材料板刚度[J]. 复合材料学报, 2000, 17(1):108-110. doi: 10.3321/j.issn:1000-3851.2000.01.024

    HUA H X, CHEN X L, SHI Y M. Composite plate stiffness identification using neural networks[J]. Acta Materiae Compositae Sinica,2000,17(1):108-110(in Chinese). doi: 10.3321/j.issn:1000-3851.2000.01.024
    [29] TALREJA R R. Fatigue of composite materials[M]. Boca Raton: CRC Press, 1987.
    [30] HECHT-NIELSEN R. Theory of the backpropagation neural network[C]. International Joint Conference on Neural Networks. New York: IEEE Press, 2002: 593-605.
    [31] 薛掌安, 邓海亮. BP神经网络在复合材料研究中的应用[J]. 材料导报, 2009, 23(S1):250-253.

    XUE Z A, DENG H L. Application of BP neural network in composite materials research[J]. Materials Reports,2009,23(S1):250-253(in Chinese).
  • 加载中
图(19) / 表(7)
计量
  • 文章访问数:  601
  • HTML全文浏览量:  242
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-08
  • 录用日期:  2020-11-30
  • 网络出版日期:  2020-12-16
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回