留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ABAQUS二次开发的球形破片侵彻UHMWPE软质防弹衣数值模拟

罗小豪 温垚珂 闫文敏 曹岩枫 董方栋

罗小豪, 温垚珂, 闫文敏, 等. 基于ABAQUS二次开发的球形破片侵彻UHMWPE软质防弹衣数值模拟[J]. 复合材料学报, 2021, 38(10): 3373-3386. doi: 10.13801/j.cnki.fhclxb.20201215.003
引用本文: 罗小豪, 温垚珂, 闫文敏, 等. 基于ABAQUS二次开发的球形破片侵彻UHMWPE软质防弹衣数值模拟[J]. 复合材料学报, 2021, 38(10): 3373-3386. doi: 10.13801/j.cnki.fhclxb.20201215.003
LUO Xiaohao, WEN Yaoke, YAN Wenmin, et al. Numerical simulation of spherical fragment penetrating UHMWPE soft body armor based on ABAQUS[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3373-3386. doi: 10.13801/j.cnki.fhclxb.20201215.003
Citation: LUO Xiaohao, WEN Yaoke, YAN Wenmin, et al. Numerical simulation of spherical fragment penetrating UHMWPE soft body armor based on ABAQUS[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3373-3386. doi: 10.13801/j.cnki.fhclxb.20201215.003

基于ABAQUS二次开发的球形破片侵彻UHMWPE软质防弹衣数值模拟

doi: 10.13801/j.cnki.fhclxb.20201215.003
基金项目: 国家自然科学基金(11872215);国防科工局稳定支持经费项目(JCKYS201909C001);军委科技委基础加强计划技术领域基金(2019-JCJQ-JJ-373)
详细信息
    通讯作者:

    温垚珂,博士,副教授,研究方向为冲击动力学 E-mail:wenyk2011@163.com

  • 中图分类号: TJ04

Numerical simulation of spherical fragment penetrating UHMWPE soft body armor based on ABAQUS

  • 摘要: 为准确模拟破片侵彻防弹衣的过程,揭示破片与软质防弹衣相互作用机制,本文基于ABAQUS用户子程序VUMAT编写了适用于模拟软质防弹衣材料力学性能的本构模型,建立了球形破片侵彻软质防弹衣的有限元模型,数值模拟结果与实验吻合较好。本构模型中材料失效模式数据表明,无纬布主要发生纤维拉伸、基体拉伸和压缩失效;在钢球侵彻防弹衣的初期,无纬布上的应力云图一般呈现较规则的圆形或椭圆形,然后再慢慢向四周扩散;钢球侵彻软质防弹衣的过程中伴随有较明显的纤维层间分层失效,未穿透的纤维层中也出现了分层的现象,分层面积从迎弹面到背弹面先减小后增大再减小。

     

  • 图  1  Cohesive单元双线性本构模型

    Figure  1.  Bilinear constitutive model of cohesive element

    $\delta _{\rm{m}}^0 $—Equivalent displacement at the beginning of damage; $\delta _{\rm{m}}^{\rm{f}}$—Equivalent displacement corresponding to complete damage; GC—Equivalent fracture toughness

    图  2  VUMAT子程序流程图

    Figure  2.  Flow chart of VUMAT

    图  3  钢球网格模型

    Figure  3.  Finite element mesh of steel sphere

    图  4  数值仿真和试验中钢球的最终形态对比

    Figure  4.  Comparison of final shape of steel sphere in numerical simulation and experiment

    图  5  数值仿真中钢球不同材料模型对比

    Figure  5.  Comparison of different material models of steel sphere in numerical simulation

    图  6  内聚力单元网格模型

    Figure  6.  Finite element mesh of cohesive elements

    图  7  超高分子量聚乙烯(UHMWPE)软质防弹衣网格模型

    Figure  7.  Finite element mesh of ultra-high molecular weight polyethylene (UHMWPE) soft bulletproof vest

    图  8  不同侵彻速度下UHMWPE防弹衣穿透层数的试验和仿真结果对比

    Figure  8.  Comparison of the computed and the experimentally observed number of UHMWPE bulletproof vest failure layers at different impact velocities

    图  9  实验和仿真中UHMWPE防弹衣的破口情况对比

    Figure  9.  Comparison of the breach of UHMWPE bulletproof vest in experiment and simulation

    图  10  钢球速度变化曲线

    Figure  10.  Time history of the computed residual velocity for the steel sphere

    图  11  入射速度为540 m/s时损伤状态变化过程

    Figure  11.  Change process of damage state for impact velocity of 540 m/s

    图  12  UHMWPE防弹衣中基体拉伸和压缩损伤

    Figure  12.  Tensile and compression damage of matrix in UHMWPE bulletproof vest

    图  13  侵彻速度为540 m/s时,第1层UHMWPE无纬布等效应力分布

    Figure  13.  Equivalent stress distribution of the first layer UHMWPE unidirectional fiber cloth for impact velocity of 540 m/s

    图  15  侵彻速度为540 m/s时第46层UHMWPE无纬布等效应力分布

    Figure  15.  Equivalent stress distribution of the 46th layer UHMWPE unidirectional fiber cloth for impact velocity of 540 m/s

    图  14  侵彻速度为540 m/s时第23层UHMWPE无纬布等效应力分布

    Figure  14.  Equivalent stress distribution of the 23rd layer UHMWPE unidirectional fiber cloth for impact velocity of 540 m/s

    图  17  侵彻速度540 m/s时UHMWPE防弹衣沿侵彻方向下的分层面积

    Figure  17.  Delamination area of UHMWPE bulletproof vest along penetration direction for impact velocity of 540 m/s

    图  16  侵彻速度为540 m/s、时间为35 μs时,UHMWPE防弹衣各层Cohesive单元等效应力分布

    Figure  16.  Contours of equivalent stress in each layer of the cohesive elements of UHMWPE bulletproof vest for impact velocity 540 m/s at 35 μs

    表  1  钢球材料参数

    Table  1.   Material parameters of steel sphere

    Materialρ/(g·cm−3)E/GPaν
    Steel7.832110.27
    Notes: ρ—Density; E—Elastic modulus; ν—Poisson's ratio.
    下载: 导出CSV

    表  2  UHMWPE软质防弹衣材料参数[6]

    Table  2.   Material parameters of UHMWPE soft bulletproof vest

    Model parameterρ/(g·cm−3)${E_1}$/GPa${E_2}$/GPa${E_3}$/GPa${v_{12}}$${v_{13}}$${v_{23}}$
    0.97 80 30 20 0.18 0.18 0.11
    Model parameter ${G_{12}}$/GPa ${G_{23}}$/GPa ${G_{13}}$/GPa XC/MPa XT/MPa YC/MPa YT/MPa
    20 10 20 4500 4500 700 700
    Model parameter ZC/MPa ZT/MPa S12/MPa S23/MPa S13/MPa
    700 700 400 400 400
    Notes: ${E_1}$, ${E_2}$, ${E_3}$—Elastic modulus in x, y, and z directions, respectively; ${v_{12}}$, ${v_{13}}$, ${v_{23}}$—Poisson's ratios; ${G_{12}}$, ${G_{23}}$, ${G_{13}}$—Shear modulus; XC, XT, YC, YT, ZC, ZT—Compressive and tensile strengths in x, y, z directions; S12, S23, S13—Shear strengths.
    下载: 导出CSV

    表  3  内聚力单元材料参数[29]

    Table  3.   Material parameters of cohesive element

    Model parameterρ/(g·cm−3)En/MPaGs/MPa σn/MPaσs/MPaGⅠ C/(J·m−2)GⅡ C/(J·m−2)GⅢ C/(J·m−2)
    29700650055120280495495
    Notes:En—Elastic modulus; Gs—Shear modulus; σn, σs—Normal and tangential strengths; GⅠ C, GⅡ C, GⅢ C—Critical energy release rates in mode I, mode II and mode III.
    下载: 导出CSV

    表  4  实验和数值仿真中UHMWPE软防护破坏层数对比(钢球着靶速度区间为617~650 m/s)

    Table  4.   Comparison of the computed and the experimentally observed number of UHMWPE soft bulletproof vest failure layers(Impact velocity of steel sphere is 617-650 m/s)

    Impact velocity/(m·s−1)Coordinates of impact point/cmNumber of penetrating layers
    Experimental value 1 650 (17,16.5) 43
    Experimental value 2 643 (15,15.5) 41
    Experimental value 3 619 (14,16.5) 42
    Experimental value 4 648 (14.5,16) 41
    Experimental value 5 617 (14,15.5) 39
    Experimental value 6 632 (14,15.5) 40
    Simulation value 630 (15,15) 40
    Note: Take the sitting corner of the front of the body armor as the origin of the coordinates.
    下载: 导出CSV

    表  5  实验和数值仿真中UHMWPE软防护破坏层数对比(钢球着靶速度区间为515~588 m/s)

    Table  5.   Comparison of the computed and the experimentally observed number of UHMWPE soft bulletproof vest failure layers(Impact velocity of steel sphere is 515-588 m/s)

    Impact velocity/(m·s−1)Coordinates of impact point/cmNumber of penetrating layers
    Experimental value 1 588 (16.5,16.5) 36
    Experimental value 2 575 (17,15.5) 33
    Experimental value 3 519 (17,15.5) 31
    Experimental value 4 520 (17,16.5) 29
    Experimental value 5 518 (17,15.5) 26
    Experimental value 6 515 (16.5,16.5) 28
    Simulation value 540 (15,15) 33
    Note: Take the sitting corner of the front of the body armor as the origin of the coordinates.
    下载: 导出CSV
  • [1] 邹渝, 李曙光, 肖南. 单兵防弹衣对穿甲破片的防护效应研究[J]. 医疗卫生装备, 2015, 36(11):36-38.

    ZOU Yu, LI Shuguang, XIAO Nan. Study on protective effect of individual bullet-proof cloth against armor-piercing fragments[J]. Chinese Medical Equipment Journal,2015,36(11):36-38(in Chinese).
    [2] 顾冰芳, 龚烈航, 徐国跃. UHMWPE纤维复合材料防弹机理和性能[J]. 纤维复合材料, 2006(1):20-23. doi: 10.3969/j.issn.1003-6423.2006.01.007

    GU Bingfang, GONG Liehang, XU Guoyue. Ballistic resistance mechanism and performance of UHMWPE compo-sites[J]. Fiber Composites,2006(1):20-23(in Chinese). doi: 10.3969/j.issn.1003-6423.2006.01.007
    [3] ZHENG Xiaotao, WU Kewei, WANG Jiqiang, et al. Mechanical characteristics of medical grade UHMWPE under dynamic compression[J]. Journal of Materials Science Materials in Medicine,2019,30(5):50.
    [4] LI Chen, KANG Zheng, QIN Fang. Effect of strain rate on the dynamic tensile behaviour of UHMWPE fibre laminates[J]. Polymer Testing,2017,63:54-64.
    [5] 肖文莹, 郭万涛, 李想. 超高分子量聚乙烯纤维增强防弹复合材料研究进展[J]. 材料开发与应用, 2019, 34(2):131-138.

    XIAO Wenying, GUO Wantao, LI Xiang. Research progress of UHMWPE fiber reinforced bulletproof composites[J]. Development and Application of Materials,2019,34(2):131-138(in Chinese).
    [6] 黄拱武. 弹体撞击带纤维软防护明胶靶标的数值仿真研究[D]. 南京: 南京理工大学, 2013.

    HUANG Gongwu. Numerical simulation of soft fiber protection gelatin target in projectile impact zone[D]. Nanjing: Nanjing University of Science and Technology, 2013(in Chinese).
    [7] 罗少敏. 小质量物体高速撞击陶瓷复合靶板毁伤效应研究[D]. 南京: 南京理工大学, 2013.

    LUO Shaomin. Study on damage effect of ceramic composite target impacted by small mass at high speed[D]. Nanjing: Nanjing University of Science and Technology, 2013(in Chinese).
    [8] 董萍, 徐诚, 陈菁. 非贯穿侵彻超高分子量聚乙烯纤维软体防弹衣数值模拟[J]. 计算机辅助工程, 2013, 22(1):46-49, 53.

    DONG Ping, XU Cheng, CHEN Jing. Numerical simulation of non-penetrating penetration of UHMWPE soft body armor[J]. Computer Aided Engineering,2013,22(1):46-49, 53(in Chinese).
    [9] 孙非, 马力, 朱一辉, 等. 手枪弹对带UHMWPE软防护明胶靶标冲击效应的数值分析[J]. 振动与冲击, 2018, 37(13):20-26.

    SUN Fei, MA Li, ZHU Yihui, et al. Numerical analysis for impact effects of a pistol bullet on a gelatin target covered with UHMWPE fiber amor[J]. Journal of Vibration and Shock,2018,37(13):20-26(in Chinese).
    [10] 张启宽. 步枪弹对带复合防护人体靶标作用的数值模拟[D]. 南京: 南京理工大学, 2012.

    ZHANG Qikuan. Numerical simulation of the effect of bullet on human body target with compound protection[D]. Nanjing: Nanjing University of Science and Technology, 2012(in Chinese).
    [11] 包阔, 张先锋, 谈梦婷, 等. 子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究[J]. 爆炸与冲击, 2019, 39(12):57-68.

    BAO Kuo, ZHANG Xianfeng, TAN Mengting, et al. Experimental and numerical simulation of impact of bullet on boron carbide ceramic composite target[J]. Explosion and Shock Waves,2019,39(12):57-68(in Chinese).
    [12] 江怡, 黄健, 陈威, 等. 防弹复合结构抗侵彻性能分析[J]. 计算机仿真, 2019, 36(12):10-14, 30.

    JIANG Yi, HUANG Jian, CHEN Wei, et al. Analysis of anti penetration performance of bulletproof composite structure[J]. Computer Simulation,2019,36(12):10-14, 30(in Chinese).
    [13] LI X G, GAO X L, KLEIVEN S. Behind helmet blunt trauma induced by ballistic impact: A computational model[J]. International Journal of Impact Engineering, 2016, 91: 56-67.
    [14] GILSON L, RABET L, IMAD A, et al. Experimental and numerical assessment of non-penetrating impacts on a composite protection and ballistic gelatine[J]. International Journal of Impact Engineering,2020,136:103417.
    [15] WEN Y, XU C, WANG S, et al. Analysis of behind the armor ballistic trauma[J]. Journal of the Mechanical Behavior of Biomedical Materials,2015,45:11-21.
    [16] ZHANG R, QIANG L S, HAN B, et al. Ballistic performance of UHMWPE laminated plates and UHMWPE encapsulated aluminum structures: Numerical simulation[J]. Composite Structures,2020,252:112686.
    [17] LUO S M, XU C , CHEN A, et al. Experimental investigation of the response of gelatine behind the soft body armor[J]. Forensic Science International,2016,266:8-13.
    [18] GOPINATH G, ZHENG J Q, BATRA R C. Effect of matrix on ballistic performance of soft body armor[J]. Composite Structures,2012,94(9):2690-2696.
    [19] ROBERTS J C, MERKLE A C, BIERMANN P J, et al. Computational and experimental models of the human torso for non-penetrating ballistic impact[J]. Journal of Biomechanics,2005,40(1):125-136.
    [20] 陈滨琦. 基于多尺度方法的复合材料层合板结构失效机理研究[D]. 南京: 南京航空航天大学, 2016.

    CHEN Bingqi. Study on failure mechanism of composite laminates based on multi-scale method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
    [21] 张嘉睿, 吴富强, 姚卫星. 复合材料冲击损伤数值仿真模型评估[J]. 航空工程进展, 2019, 10(6):767-779.

    ZHANG Jiarui, WU Fuqiang, YAO Weixing. Evaluation of numerical simulation model for impact damage of compo-site materials[J]. Advances in Aeronautical Science and Engineering,2019,10(6):767-779(in Chinese).
    [22] 程之遥, 张健. 基于内聚力模型的层合板屈曲行为分析[J]. 西安理工大学学报, 2020, 36(4): 581-586

    CHENG Zhiyao, ZHANG Jian. Buckling behavior analysis of laminated plates based on cohesive force model[J]. Journal of Xi’an University of Technology, 2020, 36(4): 581-586(in Chinese).
    [23] ENGENHARIA F D, BRANCH C M. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16): 1415-1438.
    [24] 汪品红. 基于Abaqus子程序的高分子材料本构关系实现[J]. 计算机辅助工程, 2013, 22(S2):408-410.

    WANG Pinhong. Implementation of polymers constitutive relationship based Abaqus subroutine[J]. Computer Aided Engineering,2013,22(S2):408-410(in Chinese).
    [25] 伊鹏跃, 于哲峰, 汪海. 复合材料层压板低速冲击刚度退化仿真方案研究[J]. 力学季刊, 2012, 33(3):469-475. doi: 10.3969/j.issn.0254-0053.2012.03.018

    YI Pengyue, YU Zhefeng, WANG Hai. Stiffness degradation methodology for low-velocity impact simulation in composite laminate[J]. Chinese Quarterly of Mechanics,2012,33(3):469-475(in Chinese). doi: 10.3969/j.issn.0254-0053.2012.03.018
    [26] 刘勇, 陈世健, 高鑫, 等. 基于Hashin准则的单层板渐进失效分析[J]. 装备环境工程, 2010, 7(1):34-39. doi: 10.3969/j.issn.1672-9242.2010.01.009

    LIU Yong, CHEN Shijian, GAO Xin, et al. Progressive failure analysis of monolayer composite based on Hashin criterion[J]. Equipment Environmental Engineering,2010,7(1):34-39(in Chinese). doi: 10.3969/j.issn.1672-9242.2010.01.009
    [27] SPRING D W, PAULINO G H. A growing library of three-dimensional cohesive elements for use in ABAQUS[J]. Engineering Fracture Mechanics, 2014, 126: 190-216.
    [28] SUPRATIK M, HALLETT S R. An augmented cohesive element for coarse meshes in delamination analysis of composites[J]. Composite Structures, 2020, 254: 112890.
    [29] 王念. 复合材料层合板冲击损伤及损伤容限研究[D]. 南京: 南京航空航天大学, 2014.

    WANG Nian. Impact damage and damage tolerance of com posite laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  841
  • HTML全文浏览量:  503
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 录用日期:  2020-12-04
  • 网络出版日期:  2020-12-15
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回