留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国产ZT7H碳纤维表面状态及其复合材料界面性能

肖何 陈藩 刘寒松 肇研

肖何, 陈藩, 刘寒松, 等. 国产ZT7H碳纤维表面状态及其复合材料界面性能[J]. 复合材料学报, 2021, 38(8): 2554-2567. doi: 10.13801/j.cnki.fhclxb.20201209.003
引用本文: 肖何, 陈藩, 刘寒松, 等. 国产ZT7H碳纤维表面状态及其复合材料界面性能[J]. 复合材料学报, 2021, 38(8): 2554-2567. doi: 10.13801/j.cnki.fhclxb.20201209.003
XIAO He, CHEN Fan, LIU Hansong, et al. Surface state of domestic ZT7H carbon fiber and interface property of composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2554-2567. doi: 10.13801/j.cnki.fhclxb.20201209.003
Citation: XIAO He, CHEN Fan, LIU Hansong, et al. Surface state of domestic ZT7H carbon fiber and interface property of composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2554-2567. doi: 10.13801/j.cnki.fhclxb.20201209.003

国产ZT7H碳纤维表面状态及其复合材料界面性能

doi: 10.13801/j.cnki.fhclxb.20201209.003
详细信息
    通讯作者:

    肇研,博士,教授,博士生导师,研究方向为先进碳纤维/织物增强树脂基复合材料、碳纳米复合材料及功能复合材料E-mail:jennyzhaoyan@buaa.edu.cn

  • 中图分类号: TQ342.742;TB33

Surface state of domestic ZT7H carbon fiber and interface property of composites

  • 摘要: 目前我国在高性能碳纤维研发生产方面已取得了突破性的进展。本文选用不同批次和牌号的国产ZT7H碳纤维,对其进行去浆和上浆处理,并制备碳纤维增强环氧树脂基复合材料,探究国产H1型上浆剂对ZT7H碳纤维表面形貌和微观界面性能的影响及不同牌号碳纤维复合材料界面性能的差异。研究表明,H1上浆剂增加了碳纤维表面粗糙度和极性组分含量,增强了湿热老化前后复合材料的微观界面力学性能。同时,碳纤维织物的编织方式对其复合材料的静态力学性能和界面性能有很大影响。实验证明,国产ZT7H碳纤维的性能已超过东丽T700碳纤维,但其加工工艺性仍有待提升。

     

  • 图  1  单丝断裂实验试样尺寸

    Figure  1.  Sample size of monofilament break test

    图  2  微脱粘试样示意图

    Figure  2.  Schematic diagram of micro debonding test

    图  3  ZT7H碳纤维表面的SEM图像

    Figure  3.  SEM images of ZT7H carbon fiber surface((a) Bare side; (b) Bare section; (c) H1 sizing side)

    图  4  ZT7H碳纤维表面的AFM图像

    Figure  4.  AFM images of ZT7H carbon fiber surface((a) Bare fiber; (b) H1 sizing)

    图  5  ZT7H碳纤维单丝强度韦伯分布拟合曲线

    Figure  5.  Weber distribution fitting curve of ZT7H carbon fiber monofilament strength ((a) Bare ZT7H; (b) H1 sizing ZT7H)

    图  6  ZT7H 碳纤维与东丽 T700 碳纤维的拉伸性能与密度

    Figure  6.  Tensile properties and density of ZT7H carbon fiber and Toray T700 carbon fiber

    图  7  ZT7H碳纤维单丝断裂实验光弹花样(放大倍数50)

    Figure  7.  Photoelastic pattern of ZT7H carbon fiber monofilament fracture experiment (Magnification: 50) ((a) Bare fiber; (b) H1 sizing)

    图  8  ZT7H 碳纤维复合材料界面剪切强度(IFSS)

    Figure  8.  Interface shear strength (IFSS) of ZT7H carbon fiber composite

    图  9  ZT7H碳纤维湿热处理后单丝断裂实验光弹花样(放大倍数50)

    Figure  9.  Photoelastic pattern of ZT7H carbon fiber monofilament after hygrothermal treat (Magnification: 50)((a) Bare fiber; (b) H1 sizing)

    图  10  室温干态和高温干态下ZT7E/9368和ZT7E3205P/6808复合材料的静态力学性能

    Figure  10.  Static mechanical properties of ZT7E/9368 and ZT7E3205P/6808 composites at room temperature and high temperature

    图  11  不同批次ZT7E/9368复合材料的静态力学性能

    Figure  11.  Static mechanical properties of different batches of ZT7E/9368 composite materials

    图  12  不同批次ZT7E3205P/6808复合材料的静态力学性能

    Figure  12.  Static mechanical properties of different batches of ZT7E3205P/6808 composite materials

    表  1  ZT7E/9368和ZT7E3205P/6808碳纤维/环氧树脂复合材料力学性能测试基本参数

    Table  1.   Basic parameters of mechanical properties test of ZT7E/9368 and ZT7E3205P/6808 carbon fiber/epoxy composite

    TestTest standardSize/mmVolume fraction of fiber Vf/%
    0° compression properties GB/T 3856—2005[33] 140×6×2 55±3
    90° tensile properties GB/T 3354—2014[34] 170×25×2
    Flexural properties GB/T 3356—2014[35] 85×12.5×2
    Interlaminar shear properties JC/T 773—2010[36] 206×6×2
    下载: 导出CSV

    表  2  ZT7H 碳纤维表面元素成分及含量

    Table  2.   Element composition and content of ZT7H carbon fiber surface

    Carbon
    fiber
    C 1sO 1sN 1sS 2pSi 2pO/C
    Binding energy/
    eV
    Atom fraction/
    at%
    Binding energy/
    eV
    Atom fraction/
    at%
    Binding energy/
    eV
    Atom fraction/
    at%
    Binding energy/
    eV
    Atom fraction/
    at%
    Binding energy/
    eV
    Atom fraction/
    at%
    Bare fiber 284.8 67.75 532.7 21.27 400.9 3.81 168.6 0.42 102.3 6.75 0.31
    H1 sizing 284.8 75.30 532.7 18.84 400.9 2.06 168.6 0.59 102.3 3.22 0.25
    下载: 导出CSV

    表  3  ZT7H碳纤维表面XPS的C1s拟合峰结果

    Table  3.   C1s fitting peak results of XPS on ZT7H carbon fiber surface

    Carbon fiber—C—C— or —C—H——C—OH— or —C—OR—C= O—COOH or —COOR
    Binding energy/eVPerssad content/%Binding energy/eVPerssad content/%Binding energy/eVPerssad content/%Binding energy/eVPerssad content/%
    Bare fiber 284.8 66.92 286.4 29.75 287.8 3.33
    H1 sizing 284.8 65.87 286.3 32.00 287.0 2.12
    下载: 导出CSV

    表  4  ZT7H碳纤维接触角和表面能组成

    Table  4.   Contact angle and surface energy composition of ZT7H carbon fiber

    Carbon
    fiber
    Infiltrating
    perimeter/mm
    Contact angle/(°)Surface
    energy/(m·Nm)
    Polar
    component/(m·Nm)
    Non-polar
    component/(m·Nm)
    WaterDiiodomethane
    Bare fiber 2.50 67.82 44.63 41.58 12.59 28.99
    H1 sizing 3.46 68.60 56.21 37.56 15.08 22.48
    下载: 导出CSV

    表  5  ZT7H碳纤维单丝拉伸测试结果

    Table  5.   Monofilament tensile test results of ZT7H carbon fiber

    Carbon
    fiber
    Number of samplesShape parameter mTensile strength/MPa
    Bare fiber 30 4.65 4 122.39
    H1 sizing 30 7.09 4 249.17
    下载: 导出CSV

    表  6  自然干态和湿热处理后ZT7H碳纤维复合材料的IFSS及保持率

    Table  6.   IFSS and retention of ZT7H carbon fiber composites at natural dry state and after hygrothermal treat

    Carbon fiberIFSS/MPaRetention rate/%
    Dry stateHygrothermal treat
    Bare fiber 23.87 7.02 29.4
    H1 sizing 33.09 16.68 50.4
    下载: 导出CSV

    表  7  室温干态和高温干态下ZT7E/9368和ZT7E3205P/6808复合材料的静态力学性能及保持率

    Table  7.   Static mechanical properties and retention rate of ZT7E/9368 and ZT7E3205P/6808 composites at room temperature and high temperature

    PropertyZT7E/9368ZT7E3205P/6808
    Room temperature
    dry state
    High temperature
    dry state
    Retention
    rate/%
    Room temperature
    dry state
    High temperature
    dry state
    Retention
    rate/%
    0° Compression strength/MPa 950 800 84.21 500 350 70.00
    0° Compression modulus/GPa 115 110 95.65 50 40 80.00
    90° Tensile strength/MPa 30 25 83.33 600 500 83.33
    90° Tensile modulus/GPa 8 7 87.50 60 50 83.33
    Flexural strength/MPa 1 500 1 200 80.00 700 600 85.71
    Flexural modulus/GPa 115 110 95.65 55 45 81.82
    Interlaminar shear strength/MPa 85 60 70.59 55 40 72.73
    下载: 导出CSV
  • [1] 王茂章. 碳纤维及其复合材料[J]. 新型炭材料, 1989(4):5-11. doi: 10.3321/j.issn:1007-8827.1989.01.001

    WANG Maozhang. Carbon fiber and its composite materials[J]. New Carbon Materials,1989(4):5-11(in Chinese). doi: 10.3321/j.issn:1007-8827.1989.01.001
    [2] 李建利, 张新元, 张元, 等. 碳纤维的发展现状及开发应用[J]. 成都纺织高等专科学校学报, 2016(2):158-164.

    LI Jianli, ZHANG Xinyuan, ZHANG Yuan, et al. Development status and application of carbon fiber[J]. Journal of Chengdu Textile College,2016(2):158-164(in Chinese).
    [3] 贺福, 孙微. 碳纤维复合材料在大飞机上的应用[J]. 高科技纤维与应用, 2007, 32(6):5-8.

    HE Fu, SUN Wei. Application of carbon fiber composite materials in large aircraft[J]. Hi-Tech Fibers & Applications,2007,32(6):5-8(in Chinese).
    [4] JACOBASCH H J, GRUNDKE K, UHLMANN P, et al. Comparison of surface-chemical methods for characterizing carbon fiber-epoxy resin composites[J]. Composite Interfaces,1995,3(4):293-320. doi: 10.1163/156855495X00093
    [5] 戎光道. 我国碳纤维产业发展现状及建议[J]. 合成纤维工业, 2013, 36(2):41-45. doi: 10.3969/j.issn.1001-0041.2013.02.012

    RONG Guangdao. Development status and suggestion on China carbon fiber industry[J]. China Synthetic Fiber Industry,2013,36(2):41-45(in Chinese). doi: 10.3969/j.issn.1001-0041.2013.02.012
    [6] 陆洲, 王习. 国防军工行业: 光威复材VS中简科技对比分析[R]. 2019.

    LU Zhou, WANG Xi. National defense and military industry: Guangwei composite VS China jian technology comparative analysis[R]. 2019(in Chinese).
    [7] 杜帅, 何敏, 刘玉飞, 等. 碳纤维表面改性研究进展[J]. 纺织导报, 2017(6):58-61.

    DU Shuai, HE Min, LIU Yufei, et al. Research progress on surface modification of PAN carbon fiber[J]. China Textile Leader,2017(6):58-61(in Chinese).
    [8] 战奕凯, 赵潜, 李莉萍, 等. 碳纤维表面改性研究进展[J]. 工程塑料应用, 2019, 47(10):135-139. doi: 10.3969/j.issn.1001-3539.2019.10.025

    ZHAN Yikai, ZHAO Qian, LI Liping, et al. Research progress of carbon fiber surface modification[J]. Engineering Plastics Application,2019,47(10):135-139(in Chinese). doi: 10.3969/j.issn.1001-3539.2019.10.025
    [9] KIM J, MAI Y. Engineered interfaces in fiber reinforced composites[J]. Elsevier, 1998: 329-365.
    [10] 石峰晖, 代志双, 张宝艳. 碳纤维表面性质分析及其对复合材料界面性能的影响[J]. 航空材料学报, 2010, 30(3):43-47. doi: 10.3969/j.issn.1005-5053.2010.3.010

    SHI Fenghui, DAI Zhishuang, ZHANG Baoyan. Characterization of surface properties ofcarbon fibers and interfacial properties of carbon fibers reinforced matrix composites[J]. Journal of Aeronautical Materials,2010,30(3):43-47(in Chinese). doi: 10.3969/j.issn.1005-5053.2010.3.010
    [11] WU Z, CUI H, CHEN L, et al. Interfacially reinforced unsaturated polyester carbon fiber composites with a vinyl ester-carbon nanotubes sizing agent[J]. Composites Science and Technology,2018,164:195-203. doi: 10.1016/j.compscitech.2018.05.051
    [12] TETI R. Machining of composite materials[J]. CIRP Annals Manufacturing Technology,2002,51(2):611-634. doi: 10.1016/S0007-8506(07)61703-X
    [13] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [14] JYONGSIK J, HOJUNG Y. The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites[J]. Journal of Materials Science,2000,35(9):2297-2303. doi: 10.1023/A:1004791313979
    [15] PARK S J, KIM M H. Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites[J]. Journal of Materials Science,2000,35(8):1901-1905. doi: 10.1023/A:1004754100310
    [16] HO K K C, LAMORINIERE S, KALINKA G, et al. Interfacial behavior between atmospheric-plasma-fluorinated carbon fibers and poly (vinylidene fluoride)[J]. Journal of Colloid and Interface Science,2007,313(2):476-484. doi: 10.1016/j.jcis.2007.04.076
    [17] 高艳, 杨小兵, 廖国峰, 等. 碳纤维用耐高温型环氧树脂上浆剂的制备及性能研究[J]. 高科技纤维与应用, 2020, 45(4):15-19. doi: 10.3969/j.issn.1007-9815.2020.04.003

    GAO Yan, YANG Xiaobing, LIAO Guofeng, et al. The Preparation and performance study of high temperature resistant epoxy resin sizing agent for carbon fiber[J]. Hi-Tech Fibers and Application,2020,45(4):15-19(in Chinese). doi: 10.3969/j.issn.1007-9815.2020.04.003
    [18] 曹莉娟, 杨禹, 吕春祥. 碳纳米管改性乳液上浆剂对炭纤维复合材料界面性能的影响[J]. 新型炭材料, 2016, 31(2):151-158.

    CAO Lijuan, YANG Yu, LV Chunxiang. A sizing agent modified with carbon nanotubes used for the production of carbon fiber/bisphenol a epoxy composites[J]. New Carbon Materials,2016,31(2):151-158(in Chinese).
    [19] LI L Z, WANG J, LIU W B, et al. Remarkable improvement in interfacial shear strength of carbon fiber/epoxy compo-site by large-scare sizing with epoxy sizing agent containing amine-treated MWCNTs[J]. Polymer Composites,2018,39(8):2734-2742. doi: 10.1002/pc.24263
    [20] WU Z J, MA L H, LIU L, et al. Interface enhancement of carbon fiber reinforced unsaturated polyester composites with sizingagent containing carbon nanotubes[J]. Journal of Reinforced Plastics and Composites,2014,33(3):242-251. doi: 10.1177/0731684413507623
    [21] WOLFF E G. Moisture effects on polymer matrix compo-sites[J]. SAMPE Journal(USA),1993,29(3):11-19.
    [22] MENG M, RIZVI M J, LE H R, et al. Multi-scale modelling of moisture diffusion coupled with stress distribution in CFRP laminated composites[J]. Composite Structures,2016,138:295-304. doi: 10.1016/j.compstruct.2015.11.028
    [23] 黄彬瑶, 段跃新, 杨喆, 等. 上浆剂对国产碳纤维复合材料界面性能的影响[J]. 材料科学与工艺, 2014(5):60-65. doi: 10.11951/j.issn.1005-0299.20140514

    HUANG Binyao, DUAN Yuexin, YANG Zhe, et al. Effects of sizing agent on the interface properties of domestic carbon fiber composites[J]. Materials Science & Technology,2014(5):60-65(in Chinese). doi: 10.11951/j.issn.1005-0299.20140514
    [24] 肇研, 罗云烽, 丁东, 等. 不同上浆剂的国产碳纤维复合材料湿热性能研究[J]. 材料工程, 2009(10):36-40. doi: 10.3969/j.issn.1001-4381.2009.10.008

    ZHAO Yan, LUO Yunfeng, DING Dong, et al. Hygrothermal property of CCF/BMI composites with different sizing on the carbon fiber[J]. Materials Engineering,2009(10):36-40(in Chinese). doi: 10.3969/j.issn.1001-4381.2009.10.008
    [25] ASTM International. Standard test method for tensile strength and Young’s modulus for high-modulus single-filament materials: ASTM D3379[S]. West Conshohocken: ASTM International. 1989.
    [26] 全国纤维增强塑料标准化技术委员会. 碳纤维复丝拉伸性能试验方法: GB/T 3362—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Test method for tensile properties of carbon fiber multifilament: GB/T 3362—2005[S]. Beijing: China Standard Press, 2005(in Chinese).
    [27] KELLEY A, TYSON W. Tensile properties of fiber-reinforced metals[J]. Journal of Mechanical and Physical Solids,1965,13:329-350. doi: 10.1016/0022-5096(65)90035-9
    [28] 贺福, 王润娥. 碳纤维强度的Weibull分析[J]. 碳素, 1987(2):14-17.

    HE Fu, WANG Rune. Weibull analysis of carbon fiber strength[J]. Carbon,1987(2):14-17(in Chinese).
    [29] 吴琪琳, 潘鼎. 碳纤维强度的WEIBULL分析理论[J]. 高科技纤维与应用, 1999(6):41-44.

    WU Qilin, PAN Ding. WEIBULL analysis of carbon fiber strength[J]. Hi-Tech Fiber & Application,1999(6):41-44(in Chinese).
    [30] 袁辉, 温卫东, 崔海涛. 纤维单丝及纤维束强度统计学分析[J]. 纺织学报, 2008, 29(1):29-33. doi: 10.3321/j.issn:0253-9721.2008.01.008

    YUAN Hui, WEN Weidong, CUI Haitao. Statistical analysis of the strength of single fibers and fiber bundles[J]. Journal of Textile Research,2008,29(1):29-33(in Chinese). doi: 10.3321/j.issn:0253-9721.2008.01.008
    [31] 邓梁波, 范赋群, 周红玲. 单向纤维增强复合材料强度的统计分析[J]. 复合材料学报, 1992, 9(3):93-102.

    DENG Liangbo, FAN Fuqun, ZHOU Hongling. Statistical analysis of failure of unidirectionally fiber-reinforced composites with local load-sharing[J]. Chinese Journal of Composites,1992,9(3):93-102(in Chinese).
    [32] GURVICH M R, DIBENEDETTO A T. Evaluation of the statistical parameters of a Weibull distribution[J]. Journal of Materials Science,1997(32):3711-3716.
    [33] 全国纤维增强塑料标准化技术委员会. 单向纤维增强塑料平板压缩性能试验方法: GB/T 3856—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Test method for compressive properties of unidirectional fiber reinforced plastic plates: GB/T3856—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [34] 全国纤维增强塑料标准化技术委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People's Republic of China. Test method for tensile properties of oriented fiber reinforced polymer matrix composites: GB/T 3354—2014[S]. Beijing: China Standard Press, 2014(in Chinese).
    [35] 全国纤维增强塑料标准化技术委员会. 定向纤维增强聚合物基复合材料弯曲性能试验方法: GB/T 3356—2014[S]. 北京: 中国标准出版社, 2014.

    Standardization Administration of the People's Republic of China. Test method for flexural properties of oriented fiber reinforced polymer matrix composites: GB/T 3356—2014[S]. Beijing: China Standard Press, 2014(in Chinese).
    [36] 全国纤维增强塑料标准化技术委员会. 纤维增强塑料短梁法测定层间剪切强度: JC/T 773—2010[S]. 北京: 中国标准出版社, 2010.

    Ministry of Industry and Information Technology. Fiber-reinforced plastics composites-Determination of apparentinterlaminar shear strength by short-beammethod: JC/T 773—2010[S]. Beijing: StandardPress of China, 2010(in Chinese).
    [37] NISHIKAWA M, OKABE T, TAKEDA N. Determination of interface properties from experiments on the fragmentation process in single-fiber composites[J]. Materials Science and Engineering: A,2008,480(1-2):549-557. doi: 10.1016/j.msea.2007.07.067
    [38] SUN L, JIA Y, MA F, et al. Analysis of interfacial adhesion behaviors by single-fiber composite tensile tests and surface wettability tests[J]. Polymer Composites,2010,31(8):1457-1464. doi: 10.1002/pc.20932
    [39] SANTULLI C. Critical length measurements in carbon fibers during single fiber fragmentation tests using acoustic emission[J]. Journal of Materials Science,2004,39(8):2905-2907. doi: 10.1023/B:JMSC.0000021477.09656.97
    [40] BARRÉ S, BENZEGGAGH M L. On the use of acoustic emission to investigate damage mechanisms in glass-fibre-reinforced polypropylene[J]. Composites Science and Technology,1994,52(3):369-376. doi: 10.1016/0266-3538(94)90171-6
    [41] 刘刚, 张朋, 杨喆, 等. 尼龙无纺布结构化增韧层增韧碳纤维/环氧树脂复合材料的湿热力学性能[J]. 复合材料学报, 2015, 32(6):1633-1640.

    LIU Gang, ZHANG Peng, YANG Zhe, et al. Hygrothermal mechanical properties of carbon fabric/epoxy composites toughened by structural toughening layer of polyamide non-woven fabric[J]. Acta Materiae Compositae Sinica,2015,32(6):1633-1640(in Chinese).
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  2106
  • HTML全文浏览量:  848
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 录用日期:  2020-11-21
  • 网络出版日期:  2020-12-10
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回