留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微/纳B4C增强6061Al复合材料微观结构及力学性能

刘瑞峰 王文先 赵威

刘瑞峰, 王文先, 赵威. 微/纳B4C增强6061Al复合材料微观结构及力学性能[J]. 复合材料学报, 2021, 38(10): 3394-3401. doi: 10.13801/j.cnki.fhclxb.20201209.002
引用本文: 刘瑞峰, 王文先, 赵威. 微/纳B4C增强6061Al复合材料微观结构及力学性能[J]. 复合材料学报, 2021, 38(10): 3394-3401. doi: 10.13801/j.cnki.fhclxb.20201209.002
LIU Ruifeng, WANG Wenxian, ZHAO Wei. Microstructure and mechanical properties of micro/nano B4C particle reinforced 6061Al matrix composites[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3394-3401. doi: 10.13801/j.cnki.fhclxb.20201209.002
Citation: LIU Ruifeng, WANG Wenxian, ZHAO Wei. Microstructure and mechanical properties of micro/nano B4C particle reinforced 6061Al matrix composites[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3394-3401. doi: 10.13801/j.cnki.fhclxb.20201209.002

微/纳B4C增强6061Al复合材料微观结构及力学性能

doi: 10.13801/j.cnki.fhclxb.20201209.002
基金项目: 国家自然科学基金(51775366)
详细信息
    通讯作者:

    王文先,教授,博士生导师,研究方向为先进材料连接及其界面行为 E-mail:wangwenxian@tyut.edu.cn

  • 中图分类号: TB33;TG146.2+1

Microstructure and mechanical properties of micro/nano B4C particle reinforced 6061Al matrix composites

  • 摘要: 采用先进粉末冶金技术(放电等离子烧结+热挤压)制备了三种体积分数(3vol%、5vol%、7vol%)的微/纳B4C增强6061Al复合材料,对不同制备阶段复合材料的微观组织(SEM、TEM、EBSD)进行观察分析,对复合材料的纳米压痕行为及拉伸性能进行测试。结果表明:烧结后B4C颗粒在基体中呈“网状”分布;挤压变形后B4C颗粒在基体实现弥散均匀分布。挤压变形后,纳米B4C在晶内及晶界均有分布,纳米B4C对位错的钉扎作用使得基体积累大量位错,提供驱动力并越过动态回复,使内部再结晶比例高达74%。当B4C体积分数为3vol%时,挤压态B4C/6061Al复合材料的抗拉强度、屈服强度及延伸率为219 MPa、88 MPa和22.5%,断裂形貌中呈现大量韧窝。

     

  • 图  1  混合粉末及不同B4C体积分数下B4C/6061Al复合材料的微观组织形貌((a)~(c) 混合粉末; (d)~(f) 烧结态复合材料; (g)~(i) 挤压态复合材料)

    Figure  1.  Microstructure morphologies of mixed powder and B4C/6061Al composite with different B4C volume fractions ((a)-(c) Mixed powder; (d)-(f) As-sintered composites; (g)-(i) As-extruded composites )

    图  2  3vol%烧结态、挤压态B4C/6061Al复合材料的EBSD结果((a)、(d) 相图; (b)、(e) 大小角晶界; (c)、(f) 再结晶)

    Figure  2.  EBSD results of 3vol% as-sintered and as-extruded B4C/6061Al composites ((a), (d) Phase map; (b), (e) High-low angle grain boundaries; (c), (f) Recrystallization)

    图  3  3vol%挤压态B4C/6061Al复合材料的TEM图像

    Figure  3.  TEM images of 3vol% as-extruded B4C/6061Al composites

    图  4  3vol%烧结态、挤压态B4C/6061Al复合材料的纳米压痕行为((a) 载荷-位移曲线; (b) 微观硬度值)

    Figure  4.  Nano-indentation behavior of 3vol% as-sintered and as-extruded B4C/6061Al composites ((a) Load-displacement curve; (b) Microhardness)

    图  5  烧结态、挤压态B4C/6061Al复合材料的拉伸应力-应变曲线

    Figure  5.  Tensile stress-strain curves of as-sintered and as-extruded B4C/6061Al composites

    图  6  3vol%烧结态、挤压态B4C/6061Al复合材料的拉伸断口形貌

    Figure  6.  Tensile fracture morphologies of 3vol% as-sintered and as-extruded B4C/6061Al composites

    图  7  3vol%挤压态B4C/6061Al复合材料的拉伸断口形貌

    Figure  7.  Tensile fracture morphologies of 3vol% as-extruded B4C/6061Al composites

    图  8  挤压态Al基体和B4C/6061Al复合材料的摩擦系数

    Figure  8.  Friction coefficients of as-extruded Al and B4C/6061Al composites

    图  9  挤压态Al基体和B4C/6061Al复合材料的摩擦磨损形貌((a) Al基体; (b) 3vol% B4C/6061Al复合材料)

    Figure  9.  Wear morphologies of as-extruded Al and B4C/6061Al composites((a) Al alloys; (b) 3vol% B4C/6061Al composites)

    表  1  烧结态、挤压态B4C/6061Al复合材料的极限拉伸强度、屈服强度和延伸率

    Table  1.   Ultimate tensile strength (UTS), yield strength (YS) and elongation of as-sintered and as-extruded B4C/6061Al composites

    B4C/vol%UTS/MPaYS/MPaElongation/%
    As-SPSed 0 138 65 18
    3 178 78 13
    5 150 92 7
    7 158 117 6
    As-extruded 0 190 77 25
    3 219 88 22.5
    5 209 95 20
    7 190 114 7.5
    下载: 导出CSV
  • [1] 王国峰, 王海洋. 烧结助剂对反应热压烧结B4C基复合材料性能的影响[J]. 复合材料学报, 2009, 26(4):102-106. doi: 10.3321/j.issn:1000-3851.2009.04.018

    WANG Guofeng, WANG Haiyang. Influence of sintering additive on the performance of B4C based composites sintered by reaction hot-pressing[J]. Acta Materiae Compositae Sinca,2009,26(4):102-106(in Chinese). doi: 10.3321/j.issn:1000-3851.2009.04.018
    [2] 刘瑞峰, 王文先, 陈洪胜, 等. 基于SPS法B4C/6061Al中子吸收复合材料组织及性能[J]. 复合材料学报, 2018, 35(2):364-370.

    LIU Ruifeng, WANG Wenxian, CHEN Hongsheng, et al. Microstructure and mechanical properties of B4C/6061Al neutron absorber composites prepared by SPS[J]. Acta Materiae Compositae Sinca,2018,35(2):364-370(in Chinese).
    [3] DOU Y H, LIU Y, LIU Y B, et al. Friction and wear behaviors of B4C/6061Al Composite[J]. Materials & Design,2014,60:669-677.
    [4] VINTILA R, CHAREST A, DREW R A L, et al. Synthesis and consolidation via spark plasma sintering of nanostructured Al-5356/B4C composite[J]. Materials Science and Engineering: A,2011,528(13-14):4395-4407. doi: 10.1016/j.msea.2011.02.079
    [5] WU C D, MA K K, WU J L, et al. Influence of particle size and spatial distribution of B4C reinforcement on the microstructure and mechanical behavior of precipitation strengthened Al alloy matrix composites[J]. Materials Science and Engineering: A,2016,675:421-430. doi: 10.1016/j.msea.2016.08.062
    [6] SHIN J H, CHOI H J, BAE D H. The structure and properties of 2024 aluminum composites reinforced with TiO2 nanoparticles[J]. Materials Science & Engineering A,2014,607:605-610.
    [7] DASH K, CHAIRA D, RAY B C. Synthesis and characterization of aluminium-alumina micro-and nano-composites by spark plasma sintering[J]. Materials Research Bulletin,2013,48:2535-2542. doi: 10.1016/j.materresbull.2013.03.014
    [8] ZHANG Y, LI J W, ZHAO L L, et al. Effect of metalloid silicon addition on densification, microstructure and thermal-physical properties of Al/diamond composites consolidated by spark plasma sintering[J]. Materials & Design,2014,63:838-847.
    [9] BATHULA S, ANANDANI R C, DHAR A, et al. Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering[J]. Materials Science & Engineering A,2014,545:97-102.
    [10] CHEN H S, WANG W X, LI Y L, et al. The design, microstructure and mechanical properties of B4C/6061Al neutron absorber composites fabricated by SPS[J]. Materials & Design,2016,94:360-367.
    [11] DEND K K, WU K, WU Y W. Effect of submicron size SiC particulates on microstructure and mechanical properties of AZ91 magnesium matrix composites[J]. Journal of Alloys and Compounds,2010,504:542-547. doi: 10.1016/j.jallcom.2010.05.159
    [12] KHODABAKHSHI F, SIMCHI A. The role of microstructural features on the electrical resistivity and mechanical properties of powder metallurgy Al-SiC-Al2O3 nano composites[J]. Materials & Design,2017,130:26-36.
    [13] SUN Y P, YAN H G, SU B, et al. Microstructure and mechanical properties of spray deposition Al/SiCp composite after hot extrusion[J]. Journal of Materials Engineering and Performance,2011,20:1697-1702. doi: 10.1007/s11665-011-9859-6
    [14] CHEN H S, WANG W X, NIE H H, et al. Microstructure and mechanical properties of B4C/6061Al laminar composites fabricated by power metallurgy[J]. Vacuum,2017,143:363-370. doi: 10.1016/j.vacuum.2017.06.009
    [15] JAFARIAN H, HABIBI-LIVAR J, RAZAVI S H, et al. Microstructure evolution and mechanical properties in ultrafine grained Al/TiC composite fabricated by accumulative roll bonding[J]. Composites Part B: Engineering,2015,77:84-92. doi: 10.1016/j.compositesb.2015.03.009
    [16] KASPAR K, BADU N K, ALOGAB K A, et al. Microstructure and mechanical properties of near net shaped aluminium/alumina nanocomposites fabricated by powder metallurgy[J]. Journal of Alloys and Compounds,2017,714:133-143. doi: 10.1016/j.jallcom.2017.04.233
    [17] YUAN Y C, MA A B, JIANG J H, et al. Mechanical properties and precipitate behavior of Mg-9Al-1Zn alloy processed by equal channel angular pressing and aging[J]. Journal of Alloys and Compounds,2014,594:182-188. doi: 10.1016/j.jallcom.2014.01.140
    [18] WANG Z W, SONG M, SUN C, et al. Effect of extrusion and particle volume fraction on the mechanical properties of SiC reinforced Al-Cu alloy composites[J]. Materials Science and Engineering: A,2010,527(24-25):6537-6542. doi: 10.1016/j.msea.2010.07.017
    [19] WANG Z W, SONG M, SUN C, et al. Effect of particle size and distribution on the mechanical properties of SiC reinforced Al-Cu alloy composites[J]. Materials Science and Engineering: A,2011,528(3):1131-1137. doi: 10.1016/j.msea.2010.11.028
    [20] AKBARPOURA M R, MIRABADA H M, ALIPOURB S. Microstructural and mechanical characteristics of hybrid SiC/Cu composites with nano- and micro-sized SiC particles[J]. Ceramics International,2019,45:3276-3283. doi: 10.1016/j.ceramint.2018.10.235
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  933
  • HTML全文浏览量:  490
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-26
  • 录用日期:  2020-11-25
  • 网络出版日期:  2020-12-10
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回