留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚醚砜对连续碳纤维/聚醚醚酮复合材料性能的影响

申维新 姜云龙 朱爱萍

申维新, 姜云龙, 朱爱萍. 聚醚砜对连续碳纤维/聚醚醚酮复合材料性能的影响[J]. 复合材料学报, 2021, 38(6): 1809-1816. doi: 10.13801/j.cnki.fhclxb.20201130.001
引用本文: 申维新, 姜云龙, 朱爱萍. 聚醚砜对连续碳纤维/聚醚醚酮复合材料性能的影响[J]. 复合材料学报, 2021, 38(6): 1809-1816. doi: 10.13801/j.cnki.fhclxb.20201130.001
SHEN Weixin, JIANG Yunlong, ZHU Aiping. Effect of polyethersulfone on the properties of continuous carbon fiber/polyetheretherketone composites[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1809-1816. doi: 10.13801/j.cnki.fhclxb.20201130.001
Citation: SHEN Weixin, JIANG Yunlong, ZHU Aiping. Effect of polyethersulfone on the properties of continuous carbon fiber/polyetheretherketone composites[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1809-1816. doi: 10.13801/j.cnki.fhclxb.20201130.001

聚醚砜对连续碳纤维/聚醚醚酮复合材料性能的影响

doi: 10.13801/j.cnki.fhclxb.20201130.001
基金项目: 扬州市市校合作专项科技项目(YZ2020179)
详细信息
    通讯作者:

    朱爱萍,博士,教授,博士生导师,研究方向为高分子及其微纳复合材料  E-mail:apzhu@yzu.edu.cn

  • 中图分类号: TB332

Effect of polyethersulfone on the properties of continuous carbon fiber/polyetheretherketone composites

  • 摘要: 以聚醚砜(PES)作为第三组分及活化PES作为连续碳纤维(CCF)的表面改性剂制备CCF/聚醚醚酮(PEEK)复合材料,重点研究CCF/PEEK复合材料的制备工艺方法对其性能的影响。结果表明:PES作为第三组分制备的CCF/PEEK复合材料,当填充16wt%的CCF时,复合材料表面电阻降低到107~109 Ω,出现导电逾渗状态,此时摩擦系数降到最低(0.2430)。活化PES作为表面改性剂制备的CCF/PEEK复合材料,当填充30wt%的CCF时,复合材料的拉伸强度、弯曲强度、冲击强度分别提高到236.2 MPa、345.1 MPa、12.3 kJ/m2,相比无PES改性的CCF30/PEEK复合材料分别提高了13.69%,21.70%,36.97%,其中PES起到显著的均匀分散CCF与界面粘结作用。摩擦学研究结果表明,复合材料的摩擦性能不仅取决于润滑材料CCF在基体中的分布还取决于CCF与基体的界面作用力。

     

  • 图  1  连续碳纤维(CCF)和聚醚砜(PES)表面改性CCF(CCF(M))的FTIR图谱

    Figure  1.  FTIR spectra of continuous carbon fiber (CCF) and polyethersulfone (PES) surface modified CCF (CCF(M))

    图  2  CCF添加量及制备工艺对CCF/PEEK复合材料表面电阻的影响

    Figure  2.  Effect of CCF content and preparation process on surface resistance of CCF/PEEK composites

    图  3  CCF/PEEK复合材料的力学性能

    Figure  3.  Mechanical properties of CCF/PEEK composites

    图  4  CCF/PEEK复合材料淬断面SEM图像

    Figure  4.  Quenched surface SEM images of CCF/PEEK composites ((a) CCF30/PEEK; (b) CCF(Dispersant) (CCF(D))16/PEEK; (c) CCF(D)30/PEEK; (d) CCF(M)30/PEEK)

    图  5  PEEK复合材料淬断表面能量分散图谱

    Figure  5.  Energy dispersive spectra of quenched fracture surface of PEEK composites ((a) CCF(D)30/PEEK; (b) CCF(M)30/PEEK)

    图  6  CCF(M)/PEEK复合材料界面相互作用示意图

    Figure  6.  Interface interaction diagram of CCF(M)/PEEK composites

    图  7  CCF/PEEK复合材料界面的杨氏模量

    Figure  7.  Young’s modulus of PEEK composites interface

    图  8  CCF/PEEK复合材料界面杨氏模量测试选点图像

    Figure  8.  Point selection image of Young’s modulus test of PEEK composites interface ((a) CCF30/PEEK; (b) CCF(D)16/PEEK; (c) CCF(D)30/PEEK; (d) CCF(M)30/PEEK)

    图  9  CCF/PEEK复合材料的摩擦系数随时间变化的曲线

    Figure  9.  Time dependent friction coefficient curve of CCF/PEEK composites

    图  10  CCF/PEEK复合材料摩擦表面SEM图像

    Figure  10.  SEM images of CCF/PEEK composites friction surface ((a) CCF30/PEEK; (b) CCF(D)16/PEEK; (c) CCF(D)30/PEEK; (d) CCF(M)30/PEEK)

    表  1  PEEK及CCF/PEEK复合材料的摩擦性能

    Table  1.   Friction properties of PEEK and CCF/PEEK composites

    MaterialFriction coefficientWear mass loss/mgWear width/mmWear rate 10−9cm3/(N·m)
    PEEK 0.4240 8.1 4.92 8.302
    CCF30/PEEK 0.2982 1.0 2.24 1.078
    CCF(D)16/PEEK 0.2430 1.7 3.58 1.828
    CCF(D)30/PEEK 0.3196 0.7 2.08 0.7856
    CCF(M)30/PEEK 0.3845 0.4 2.19 0.4332
    下载: 导出CSV
  • [1] CHEN J, GUO Q, ZHAO Z, et al. Thermal, crystalline, and tribological properties of PEEK/PEI/PES plastics alloys[J]. Journal of Applied Polymer Science,2013,127(3):2220-2226. doi: 10.1002/app.37923
    [2] ZHENG B, GAO X P, LI M Y, et al. Formability and failure mechanisms of woven CF/PEEK composite sheet in solid-state thermoforming[J]. Polymers,2019,11(6):966. doi: 10.3390/polym11060966
    [3] LV Y, WANG W, XIE G, et al. Self-lubricating PTFE-based composites with black phosphorus nanosheets[J]. Tribology Letters,2018,66(2):61. doi: 10.1007/s11249-018-1010-5
    [4] WANG Q, WANG Y, WANG H, et al. Comparative study of the effects of nano-sized and micro-sized CF and PTFE on the thermal and tribological properties of PEEK composites[J]. Polymers for Advanced Technologies,2018,29(2):896-905. doi: 10.1002/pat.4200
    [5] MA N, LIN G M, XIE G Y, et al. Tribological behavior of polyetheretherketone composites containing short carbon fibers and potassium titanate whiskers in dry sliding against steel[J]. Journal of Applied Polymer Science,2012,123(2):740-748. doi: 10.1002/app.34502
    [6] RODRIGUEZ V, SUKUMARAN J, SCHLARB A K, et al. Reciprocating sliding wear behaviour of PEEK-based hybrid composites[J]. Wear,2016,362:161-169.
    [7] WANG P, MA R X, WANG Y M, et al. Comparative study of fullerenes and graphene nanoplatelets on the mechanical and thermomechanical properties of poly (ether ether ketone)[J]. Materials Letters,2019,249:180-184. doi: 10.1016/j.matlet.2019.04.092
    [8] WANG B, ZHANG K, ZHOU C H, et al. Engineering the mechanical properties of CNT/PEEK nanocomposites[J]. RSC Advances,2019,9(23):12836-12845. doi: 10.1039/C9RA01212E
    [9] PAPAGEORGIOU D G, LIU M F, LI Z L et al. Hybrid poly(ether ether ketone) composites reinforced with a combination of carbon fibres and graphene nanoplatelets[J]. Composites Science and Technology,2019,175:60-68. doi: 10.1016/j.compscitech.2019.03.006
    [10] KALIN M, ZALAZNIK M, NOVAK S. Wear and friction behaviour of poly-ether-ether-ketone (PEEK) filled with graphene, WS2 and CNT nanoparticles[J]. Wear,2015,332-333:855-862. doi: 10.1016/j.wear.2014.12.036
    [11] CHUNG D D L. Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in composite materials[J]. Carbon,2001,39(8):1119-1130. doi: 10.1016/S0008-6223(00)00314-6
    [12] YAO S S, JIN F L, RHEE K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B: Engineering,2018,142:241-300. doi: 10.1016/j.compositesb.2017.12.007
    [13] HASSAN E A M, ELAGIB T H H, MEMON H, et al. Surface modification of carbon fibers by grafting PEEK-NH2 for improving interfacial adhesion with polyetheretherketone[J]. Materials,2019,12(5):778. doi: 10.3390/ma12050778
    [14] LU C R, QIU S, LU X, et al. Enhancing the interfacial strength of carbon fiber/poly (ether ether ketone) hybrid composites by plasma treatments[J]. Polymers,2019,11(5):753. doi: 10.3390/polym11050753
    [15] CHEN J, ZHANG T, WANG K, et al. Multiscale enhancement behavior of nano-silica modified CF/PEEK composites prepared by wet powder impregnation[J]. Polymer Composites,2019,40(3):1187-1197. doi: 10.1002/pc.24830
    [16] GAO X P, HUANG Z G, ZHOU H M, et al. Higher mechanical performances of CF/PEEK composite laminates via reducing interlayer porosity based on the affinity of functional s-PEEK[J]. Polymer Composites,2019,40(9):3749-3757. doi: 10.1002/pc.25236
    [17] HASSAN E A M, YANG L L, ELAGIB T H H, et al. Synergistic effect of hydrogen bonding and pi-pi stacking in interface of CF/PEEK composites[J]. Composites Part B: Engineering,2019,171:70-77. doi: 10.1016/j.compositesb.2019.04.015
    [18] LI S, JIN Y, WANG Z Y, et al. Preparation and characterisation of nickel-plated carbon fibre/polyether ether ketone composites with high electromagnetic shielding and high thermal conductivity[J]. Colloid and Polymer Science,2019,297(7-8):967-977. doi: 10.1007/s00396-019-04522-5
    [19] LIN G M, XIE G Y, SUI G X, et al. Hybrid effect of nanoparticles with carbon fibers on the mechanical and wear properties of polymer composites[J]. Composites Part B: Engineering,2012,43(1):44-49. doi: 10.1016/j.compositesb.2011.04.029
    [20] LIU L, XIAO L H, ZHANG X P, et al. Improvement of the thermal conductivity and friction performance of poly(ether ether ketone)/carbon fiber laminates by addition of graphene[J]. RSC Advances,2015,5(71):57853-57859. doi: 10.1039/C5RA10722A
    [21] MANDAL S, ALAM S. Studies on the mechanical, thermal, and morphological properties of poly (ether ether ketone)/poly (ether sulfone)/barium titanate nanocomposites: Correlation of experimental results with theoretical predictive models[J]. Journal of Applied Polymer Science,2012,126(2):724-733. doi: 10.1002/app.36735
    [22] NANDAN B, KANDPAL L D, MATHUR G N. Poly (ether ether ketone)/poly (aryl ether sulfone) blends: Relationships between morphology and mechanical properties[J]. Journal of Applied Polymer Science,2003,90(11):2887-2905. doi: 10.1002/app.13009
    [23] ZHANG S L, WANG H S, WANG G B, et al. Material with high dielectric constant, low dielectric loss, and good mechanical and thermal propertiesproduced using multi-wall carbon nanotubes wrapped with poly (ether sulphone) in a poly (ether etherketone) matrix[J]. Applied Physics Letters,2012,101(1):012904. doi: 10.1063/1.4733723
    [24] JIANG W, JIN X, ZHANG H, et al. Poly (ether ether ketone)/wrapped graphite nanosheets with poly (ether sulfone) composites: Preparation, mechanical properties, and tribological behavior[J]. Journal of Applied Polymer Science,2015,132(14):41728.
    [25] HU Y, HOU X C, HU X Y, et al. Improvement in the mechanical and friction performance of poly (ether ether ketone) composites by addition of modificatory short carbon fibers and zinc oxide[J]. High Performance Polymers,2017,30(6):643-656.
    [26] 中华人民共和国国家质量监督检验检疫总局. 固体绝缘材料体积电阻率和表面电阻率试验方法: GB/T 1410—2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Methods of test for volume resistivity and surface resistivity of solid electrical insulating materials: GB/T 1410—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [27] 中国石油和化学工业协会. 塑料拉伸性能试验方法: GB/T 1040—1992[S]. 北京: 中国标准出版社, 1992.

    China Petroleum and Chemical Industry Association. Plastics: Determination of tensile properties: GB/T 1040—1992[S]. Beijing: China Standards Press, 1992(in Chinese).
    [28] 中华人民共和国国家质量监督检验检疫总局. 塑料弯曲性能试验方法: GB/T 9341—2000[S]. 北京: 中国标准出版社, 2000.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Plastics: Determination of flexural properties GB/T 9341—2000 [S]. Beijing: China Standards Press, 2000 (in Chinese)
    [29] WANG Q, WANG H, WANG Y, et al. The influences of several carbon additions on the fretting wear behaviors of UHMWPE composites[J]. Tribology International,2015,93:390-398.
    [30] ZHANG X, PEI X, WANG Q. Friction and wear properties of combined surface modified carbon fabric reinforced phenolic composites[J]. European Polymer Journal,2008,44(8):3051-3057.
    [31] VISHKAEI M S, SALLEH M A M, YUNUS R, et al. Effect of short carbon fiber surface treatment on composite properties[J]. Journal of Composite Materials,2011,45(18):1885-1891. doi: 10.1177/0021998310389090
    [32] DEY M, DEITZEL J M, GILLESPIE J W, et al. Influence of sizing formulations on glass/epoxy interphase properties[J]. Composites Part A: Applied Science and Manufacturing,2014,63(18):59-67.
    [33] LAN D N U, BAKAR A A, AZAHARI B, et al. Effect of interlocking between porous epoxy microparticles and elastomer on mechanical properties and deformation modes[J]. Polymer Testing,2012,31(7):931-937. doi: 10.1016/j.polymertesting.2012.06.004
    [34] CHEN Z B, LIU X J, LV R G, et al. Friction and wear mechanisms of PA66/PPS blend reinforced with carbon fiber[J]. Journal of Applied Polymer Science,2007,105(2):602-608. doi: 10.1002/app.25999
    [35] SU F H, ZHANG Z Z, WANG K, et al. Tribological and mechanical properties of the composites made of carbon fabrics modified with various methods[J]. Composites Part A: Applied Science and Manufacturing,2005,36(12):1601-1607. doi: 10.1016/j.compositesa.2005.04.012
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1288
  • HTML全文浏览量:  491
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 录用日期:  2020-10-18
  • 网络出版日期:  2020-12-01
  • 刊出日期:  2021-06-23

目录

    /

    返回文章
    返回