留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物降解聚酯弹性体粒子改性聚乳酸复合材料的制备及性能

黎永轩 朱韵来 彭博 焦贵宾 王庆国

黎永轩, 朱韵来, 彭博, 等. 生物降解聚酯弹性体粒子改性聚乳酸复合材料的制备及性能[J]. 复合材料学报, 2021, 38(8): 2527-2537. doi: 10.13801/j.cnki.fhclxb.20201116.002
引用本文: 黎永轩, 朱韵来, 彭博, 等. 生物降解聚酯弹性体粒子改性聚乳酸复合材料的制备及性能[J]. 复合材料学报, 2021, 38(8): 2527-2537. doi: 10.13801/j.cnki.fhclxb.20201116.002
LI Yongxuan, ZHU Yunlai, PENG Bo, et al. Preparation and properties of biodegradable polyester elastomer particle modified poly(lactic acid) composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2527-2537. doi: 10.13801/j.cnki.fhclxb.20201116.002
Citation: LI Yongxuan, ZHU Yunlai, PENG Bo, et al. Preparation and properties of biodegradable polyester elastomer particle modified poly(lactic acid) composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2527-2537. doi: 10.13801/j.cnki.fhclxb.20201116.002

生物降解聚酯弹性体粒子改性聚乳酸复合材料的制备及性能

doi: 10.13801/j.cnki.fhclxb.20201116.002
基金项目: 国家自然科学基金(51773104;51373085);山东省重点研发项目(2017GGX20138)
详细信息
    通讯作者:

    王庆国,博士,教授,博士生导师,研究方向为生态环境高分子材料的合成及性能优化  E-mail:qwang@qust.edu.cn

  • 中图分类号: TB324;TB332

Preparation and properties of biodegradable polyester elastomer particle modified poly(lactic acid) composites

  • 摘要: 以不同粒径的羧基封端生物降解聚酯弹性体粒子(CBEP)改性聚乳酸(PLA)制备了CBEP/PLA复合材料,对复合材料的力学、结晶与降解等性能进行了测试,并研究了CBEP对PLA性能的影响及作用机理。结果表明,CBEP可显著提高PLA的韧性,复合材料样条在拉伸时出现了颈缩现象,尤其是添加了7.5% (与PLA的质量比)粒径在200 nm的CBEP-a的复合材料的断裂伸长率由纯PLA的4.6%提高至155%,而复合材料的缺口冲击强度最高达到了纯PLA的2倍。同时CBEP可提高PLA的结晶性能,其中添加7.5%粒径在200 nm的CBEP-a的复合材料的等温结晶半结晶时间较纯PLA缩短了21.4%。而降解实验结果表明,添加了10%粒径在200 nm的CBEP-a的复合材料在脂肪酶环境下与土壤掩埋环境下的降解质量损失率分别由纯PLA的0.34%与0.25%,提高至2.52%与1.20%。CBEP/PLA复合材料在生物医药与环保材料等领域具有广阔的发展与应用前景。

     

  • 图  1  CBEP的粒径分布曲线

    Figure  1.  Particle size distribution curves of CBEP

    图  2  PLA及CBEP/PLA复合材料的力学性能

    Figure  2.  Mechanical properties of PLA and CBEP/PLA composites

    图  3  CBEP/PLA复合材料颈缩样条的照片 (a) 及应力-应变曲线 (b)

    Figure  3.  Photo (a) and stress-strain curves (b) of CBEP/PLA composites necking specimen

    图  4  PLA及CBEP/PLA复合材料颈缩样条的DSC曲线

    Figure  4.  DSC curves of PLA and CBEP/PLA composites necking specimen

    图  5  PLA及CBEP/PLA复合材料的结晶曲线

    Figure  5.  Crystallization data of PLA and CBEP/PLA composites ((a) Nonisothermal crystallization DSC curves; (b) Isothermal crystallization DSC curves; (c) Xt-t curves; (d) Avrami plots; (e) Subsequent melting DSC curves)

    图  6  PLA及CBEP/PLA复合材料的POM图像

    Figure  6.  POM images of PLA and CBEP/PLA composites

    图  7  CBEP在脂肪酶环境下的降解性能

    Figure  7.  Degradability of CBEP under lipase solution

    图  8  PLA及CBEP/PLA复合材料在脂肪酶环境下的质量损失率

    Figure  8.  Mass loss rate of PLA and CBEP/PLA composites under lipase solution

    图  9  CBEP添加量不同的CBEP/PLA复合材料在土壤环境下的质量损失率

    Figure  9.  Mass loss rate of CBEP/PLA composites with different ratios of CBEP after soil burial

    图  10  PLA及CBEP/PLA复合材料在土壤掩埋4个月后的体视显微镜图像

    Figure  10.  Stereo microscope images of PLA and CBEP/PLA composites after soil burial for 4 months ((a) PLA; (b) PLA-Ca10; (c) PLA-Cb10; (d) PLA-Cc10)

    表  1  羧基封端生物降解聚酯弹性体粒子(CBEP)/聚乳酸(PLA)复合材料的原料质量比及样品名称

    Table  1.   Mass ratios and sample name of carboxyl-terminated biodegradable polyester elastomer particles (CBEP)/poly (lactic acid) (PLA) composites

    Kind of CBEPParticle size/mmMass ratio of PLA/%Mass ratio of CBEP/%
    02.557.510
    CBEP-a 200 100 PLA PLA-Ca2.5 PLA-Ca5 PLA-Ca7.5 PLA-Ca10
    CBEP-b 500 100 PLA-Cb2.5 PLA-Cb5 PLA-Cb7.5 PLA-Cb10
    CBEP-c 1 000 100 PLA-Cc2.5 PLA-Cc5 PLA-Cc7.5 PLA-Cc10
    下载: 导出CSV

    表  2  PLA及CBEP/PLA复合材料的等温熔融结晶动力学参数

    Table  2.   Kinetic parameters for isothermal melt crystallization of PLA and CBEP/PLA composites

    SampleTm/℃ΔHm/(J∙g−1)ΔHc/(J∙g−1)Xc/%t1/2/minnK/10−3 minn
    PLA 167.7 34.23 30.87 36.81 9.8 2.70 1.47
    PLA-Ca7.5 165.3 36.38 27.93 42.05 7.7 2.49 4.27
    PLA-Cb7.5 165.5 34.38 29.23 39.74 8.2 2.49 3.70
    PLA-Cc7.5 166.3 33.62 30.85 38.86 8.9 2.55 2.65
    Notes: Tm—Melting temperature; ΔHm—Melting enthalpy; ΔHc—Crystalline enthalpy; Xc—Crystallinity; t1/2—Crystallization half-time; n—Avrami index; K—Crystallization rate constants.
    下载: 导出CSV
  • [1] MCDEVITT J P, CRIDDLE C S, MORSE M, et al. Addressing the issue of microplastics in the wake of the microbead-free waters act—A new standard can facilitate improved policy[J]. Environmental Science & Technology,2017,51(12):6611-6617.
    [2] SCOTT Alex, TULLO Alex. Europe takes action against single-use plastics[J]. C & EN Global Enterprise,2018,96(23):4.
    [3] 陈学思, 陈国强, 陶友华, 等. 生态环境高分子的研究进展[J]. 高分子学报, 2019, 50(10):1068-1082. doi: 10.11777/j.issn1000-3304.2019.19124

    CHEN Xuesi, CHEN Guoqiang, TAO Youhua, et al. Research progress in eco-polymers[J]. Acta Polymerica Sinica,2019,50(10):1068-1082(in Chinese). doi: 10.11777/j.issn1000-3304.2019.19124
    [4] XU Y H, ZHOU F Y, ZHOU D M, et al. Degradation behaviors of biodegradable aliphatic polyesters and polycarbonates[J]. Journal of Biobased Materials and Bioenergy,2020,14(2):155-168. doi: 10.1166/jbmb.2020.1958
    [5] MURARIU M, DUBOIS P. PLA composites: From production to properties[J]. Advanced Drug Delivery Reviews,2016,107:17-46. doi: 10.1016/j.addr.2016.04.003
    [6] AHMED T, SHAHID M, AZEEM F, et al. Biodegradation of plastics: Current scenario and future prospects for environmental safety[J]. Environmental Science and Pollution Research,2018,25(8):7287-7298. doi: 10.1007/s11356-018-1234-9
    [7] QI X, REN Y W, WANG X Z. New advances in the biodegradation of poly(lactic) acid[J]. International Biodeterioration & Biodegradation,2017,117:215-223.
    [8] 侯哲. 聚乳酸可降解塑料食品包装研究进展及其设计应用[J]. 塑料科技, 2018, 46(6):131-134.

    HOU Zhe. Research progress, design and application of polylactic acid degradable plastic food packaging[J]. Plastics Science and Technology,2018,46(6):131-134(in Chinese).
    [9] 丁茜, 余佳, 蒋馨漫, 等. 生物降解地膜材料的研究进展[J]. 工程塑料应用, 2019, 47(12):150-153. doi: 10.3969/j.issn.1001-3539.2019.12.028

    DING Qian, YU Jia, JIANG Xinman, et al. Research progress on biodegradable mulching film materials[J]. Engineering Plastics Application,2019,47(12):150-153(in Chinese). doi: 10.3969/j.issn.1001-3539.2019.12.028
    [10] 何静. 羟脯氨酸共聚改性聚乳酸的研究及其性能测试[J]. 化工新型材料, 2015, 43(9):216-218.

    HE Jing. Study and property test of modified poly(lactic acid)with hydroxy proline[J]. New Chemical Materials,2015,43(9):216-218(in Chinese).
    [11] AKAMPUMUZA O, WAMBUA P M, AHMED A, et al. Review of the applications of biocomposites in the automotive industry[J]. Polymer Composites,2017,38(11):2553-2569. doi: 10.1002/pc.23847
    [12] LIU H Z, ZHANG J W. Research progress in toughening modification of poly(lactic acid)[J]. Journal of Polymer Science Part B: Polymer Physics,2011,49(15):1051-1083. doi: 10.1002/polb.22283
    [13] TOKIWA Y, CALABIA B P. Biodegradability and biodegradation of poly(lactide)[J]. Applied Microbiology and Biotechnology,2006,72(2):244-251. doi: 10.1007/s00253-006-0488-1
    [14] 史可, 苏婷婷, 王战勇. 可降解塑料聚乳酸(PLA)生物降解性能进展[J]. 塑料, 2019, 48(3):36-41.

    SHI Ke, SU Tingting, WANG Zhanyong. Progress on biodegradability of degradable plastic polylactic Acid (PLA)[J]. Plastics,2019,48(3):36-41(in Chinese).
    [15] 邢玉清, 吴贵国, 邢军. 化学合成全降解塑料-聚乳酸[J]. 工程塑料应用, 2002, 12:57-58. doi: 10.3969/j.issn.1001-3539.2002.10.019

    XING Yuqing, WU Guiguo, XING Jun. Chemosynthesis of perfectly degradable plastics polylactic acid[J]. Engineering Plastics Application,2002,12:57-58(in Chinese). doi: 10.3969/j.issn.1001-3539.2002.10.019
    [16] 张玥珺, 余晓磊, 赵西坡, 等. 聚乳酸共聚增韧研究及其应用进展[J]. 化工新型材料, 2018, 46(10):280-283.

    ZHANG Yuejun, YU Xiaolei, ZHAO Xipo, et al. Study on PLA copolymerization toughening and its application[J]. New Chemical Materials,2018,46(10):280-283(in Chinese).
    [17] JIANG Z Y, CHANG Y, CHEN Z Z. Catalyst free synthesis of poly(l-lactic acid)-poly(propylene glycol) multiblock copolymers and their properties[J]. Journal of Applied Polymer Science,2017,134(37):45299. doi: 10.1002/app.45299
    [18] 高俊, 赵慧, 李利燕, 等. 聚乳酸-聚乙二醇-聚乳酸/聚(N-乙烯基吡咯烷酮)交联共聚物膜的制备与性能[J]. 高分子材料科学与工程, 2017, 33(1):18-22.

    GAO Jun, ZHAO Hui, LI Liyan, et al. Preparation and properties of poly(lactide)-poly(ethylene glycol)-poly(lactide)/poly(N-vinylpyrrolidone) crosslinked copolymer films[J]. Polymer Materials Science and Engineering,2017,33(1):18-22(in Chinese).
    [19] QIANG T, CHOU Y X, GAO H H. Environmental impacts of styrene-butadiene-styrene toughened wood fiber/polylactide composites: A cradle-to-gate life cycle assessment[J]. International Journal of Environmental Research and Public Health,2019,16(18):3402. doi: 10.3390/ijerph16183402
    [20] MAROUFKHANI M, KATBAB A, LIU W C, et al. Polylactide (PLA) and acrylonitrile butadiene rubber (NBR) blends: The effect of ACN content on morphology, compatibility and mechanical properties[J]. Polymer,2017,115:37-44. doi: 10.1016/j.polymer.2017.03.025
    [21] DA SILVA JA, DALMOLIN C, PACHEKOSKI W M, et al. The combined effect of plasticizers and graphene on properties of poly(lactic acid)[J]. Journal of Applied Polymer Science,2018,135(41):46745. doi: 10.1002/app.46745
    [22] YANG S L, WU Z H, MENG B, et al. The effects of dioctyl phthalate plasticization on the morphology and thermal, mechanical, and rheological properties of chemical crosslinked polylactide[J]. Journal of Polymer Science, Part B: Polymer Physics,2009,47(12):1136-1145. doi: 10.1002/polb.21716
    [23] LIU R, YIN X Q, HUANG A, et al. Preparation of organo-montmorillonite modified poly(lactic acid) and properties of its blends with wood flour[J]. Polymers,2019,11(2):204. doi: 10.3390/polym11020204
    [24] YANG B, WANG D, CHEN F, et al. Melting and crystallization behaviors of poly(lactic acid) modified with graphene acting as a nucleating agent[J]. Journal of Macromolecular Science Part B,2019,58(2):290-304. doi: 10.1080/00222348.2018.1564222
    [25] WANG Q G, ZAI Y Y, YANG D J, et al. Bio-based elastomer nanoparticles with controllable biodegradability[J]. RSC Advances,2016,6(104):102142-102148. doi: 10.1039/C6RA24336C
    [26] 彭静, 乔金梁, 魏根栓. 橡胶增韧塑料机理[J]. 高分子通报, 2001, 05:13-24. doi: 10.3969/j.issn.1003-3726.2001.05.003

    PENG Jing, QIAO Jinliang, WEI Genshuan. Toughening mechanism of polymer toughened by rubber[J]. Chinese Polymer Bulletin,2001,05:13-24(in Chinese). doi: 10.3969/j.issn.1003-3726.2001.05.003
    [27] 周承波. 聚乳酸冷结晶行为的研究[D]. 天津: 天津大学, 2017.

    ZHOU Chengbo. Study on cold crystallization behavior of poly(lactic acid)[D]. Tianjin: Tianjin University, 2017(in Chinese).
    [28] ZHAO Y Y, QIU Z B, YANG W T. Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide)[J]. Compo-sites Science and Technology,2009,69(5):627-632. doi: 10.1016/j.compscitech.2008.12.008
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  973
  • HTML全文浏览量:  450
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 录用日期:  2020-11-08
  • 网络出版日期:  2020-11-16
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回