留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米蒙脱土对木粉/聚丙烯复合材料发泡性能的影响

徐爱玲 宋永明

徐爱玲, 宋永明. 纳米蒙脱土对木粉/聚丙烯复合材料发泡性能的影响[J]. 复合材料学报, 2021, 38(8): 2497-2504. doi: 10.13801/j.cnki.fhclxb.20201111.002
引用本文: 徐爱玲, 宋永明. 纳米蒙脱土对木粉/聚丙烯复合材料发泡性能的影响[J]. 复合材料学报, 2021, 38(8): 2497-2504. doi: 10.13801/j.cnki.fhclxb.20201111.002
XU Ailing, SONG Yongming. Effect of nano-montmorillonite on foaming properties of wood flour/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2497-2504. doi: 10.13801/j.cnki.fhclxb.20201111.002
Citation: XU Ailing, SONG Yongming. Effect of nano-montmorillonite on foaming properties of wood flour/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2497-2504. doi: 10.13801/j.cnki.fhclxb.20201111.002

纳米蒙脱土对木粉/聚丙烯复合材料发泡性能的影响

doi: 10.13801/j.cnki.fhclxb.20201111.002
基金项目: 中央高校基本科研业务费专项基金(2572017PZ01);林草知识产权转化运用项目(KJZXZH202005)
详细信息
    通讯作者:

    宋永明,博士,教授,博士生导师,研究方向为生物质聚合物复合材料  E-mail:ymsong@nefu.edu.cn

  • 中图分类号: TB332

Effect of nano-montmorillonite on foaming properties of wood flour/polypropylene composites

  • 摘要: 采用高压釜间歇式发泡法,结合超临界CO2微孔发泡技术制备了发泡木粉-纳米蒙脱土(NMMT)/聚丙烯(PP)复合材料。通过对复合材料的结晶行为、流变性能、泡孔形貌及压缩性能进行分析,主要研究了NMMT对其微孔结构及力学性能的改善作用。结果表明:NMMT的引入使木粉/PP复合材料中PP基体的结晶速率加快,结晶度减小,有利于发泡均相体系的形成和泡孔生长;PP分子链的运动受到NMMT片层的抑制作用,导致木粉/PP复合材料的熔体弹性提高,泡孔合并与塌陷的现象减少,发泡材料的平均泡孔直径从30.4 μm降低至20.3 μm,并且泡孔尺寸的均匀性得到明显改善,压缩强度和模量分别提高了187%和223%。

     

  • 图  1  间歇式微孔发泡实验装置图

    Figure  1.  Diagram of the experimental setup used for the batch microcellular foaming process

    图  2  纳米蒙脱土(NMMT)与NMMT-马来酸酐接枝聚丙烯(MAPP)/聚丙烯(PP)复合材料的XRD图谱

    Figure  2.  XRD patterns of nano-montmorillonite (NMMT) and NMMT-maleic anhydride grafted polypropylene (MAPP)/polypropylene (PP) composites

    图  3  PP、杨木粉(WF)/PP复合材料与WF-NMMT/PP复合材料的XRD图谱

    Figure  3.  XRD patterns of PP, wood flour (WF)/PP composites and WF-NMMT/PP composites

    图  4  未发泡PP、WF/PP复合材料与NMMT-WF/PP复合材料的DSC结晶曲线

    Figure  4.  DSC crystallization curves of unfoamed PP, WF/PP composites and NMMT-WF/PP composites

    图  5  未发泡PP、WF/PP复合材料与NMMT-WF/PP复合材料的DSC升温曲线

    Figure  5.  DSC heating curves of unfoamed PP, WF/PP composites and NMMT-WF/PP composites

    图  6  未发泡PP、WF/PP复合材料与NMMT-WF/PP复合材料的相对结晶度随时间变化曲线

    Figure  6.  Relative crystallinity of unfoamed PP, WF/PP composites and NMMT-WF/PP composites versus crystallization time

    图  7  PP、WF/PP复合材料与NMMT-WF/PP复合材料的储能模量$G'$ (a)、损耗模量$G'' $ (b)、复数黏度$\eta ^*$ (c)、损耗角正切值 ${\rm{tan}}\delta $ (d) 随角频率$\omega $变化曲线

    Figure  7.  Storage modulus $G'$ (a), loss modulus $G'' $ (b), complex viscosity $\eta ^*$ (c) and loss tangent ${\rm{tan}}\delta $ (d) curves with angular frequency of PP, WF/PP composites and NMMT-WF/PP composites

    图  8  发泡WF/PP复合材料与发泡NMMT-WF/PP复合材料的表观密度和发泡倍率

    Figure  8.  Density and expansion ratio of foamed WF/PP composites WF/PP composites and NMMT-WF/PP composites

    图  9  发泡WF/PP复合材料 (a) 与发泡NMMT-WF/PP复合材料 (b) 的SEM图像,WF/PP复合材料 (a′) 与发泡NMMT-WF/PP复合材料 (b′) 的直方图,发泡WF/PP复合材料 (a′′) 与发泡NMMT-WF/PP复合材料 (b′′) 的泡孔生长示意图

    Figure  9.  SEM images of fracture surface of foamed WF/PP composites (a) and foamed NMMT-WF/PP composites (b), frequency histogram of foamed WF/PP composites (a′) and foamed NMMT-WF/PP composites (b′), cell growth schematic diagram of foamed WF/PP composites (a′′) and foamed NMMT-WF/PP composites (b′′)

    图  10  发泡WF/PP复合材料与发泡NMMT-WF/PP复合材料压缩应力-应变曲线

    Figure  10.  Compressive stress-strain curves of foamed WF/PP composites and foamed NMMT-WF/PP composites

    表  1  未发泡PP、WF/PP复合材料与NMMT-WF/PP复合材料的熔融峰温度、熔融焓和结晶度

    Table  1.   Molten peak temperature, melting enthalpy and crystallinity of unfoamed PP, WF/PP composites and NMMT-WF/PP composites

    TypeMelting
    peak/℃
    Melting enthalpy/
    (J·g−1)
    Crystallinity/
    %
    PP160.471.634.2
    WF/PP163.868.641.0
    NMMT-WF/PP164.653.534.5
    下载: 导出CSV
  • [1] FARUK O, BLEDZKI A K, MATUANA L M. Microcellular foamed wood-plastic composites by different processes: A review[J]. Macromolecular Materials and Engineering,2007,292(2):113-127. doi: 10.1002/mame.200600406
    [2] WANG Y Y, SONG Y M, DU J, et al. Preparation of desirable porous cell structure polylactide/wood flour composite foams assisted by chain extender[J]. Materials,2017,10(9):999. doi: 10.3390/ma10090999
    [3] ASHORI A. Wood-plastic composites as promising green-composites for automotive industries[J]. Bioresource Technology,2008,99(11):4661-4667. doi: 10.1016/j.biortech.2007.09.043
    [4] FOREST C, CHAUMONT P, CASSAGNAU P, et al. Polymer nano-foams for insulating applications prepared from CO2 foaming[J]. Progress in Polymer Science,2015,41:122-145. doi: 10.1016/j.progpolymsci.2014.07.001
    [5] WANG L, ANDO M, KUBOTA M, et al. Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams[J]. Composites Part A: Applied Science and Manufacturing,2017,98:166-173. doi: 10.1016/j.compositesa.2017.03.028
    [6] YANG C G, XING Z, WANG M H, et al. Merits of the addition of PTFE micropowder in supercritical carbon dioxide foaming of polypropylene: Ultrahigh cell density, high tensile strength, and good sound insulation[J]. Industrial & Engineering Chemistry Research,2018,57(5):1498-1505.
    [7] HUANG L, WANG H G, WANG W H, et al. Non-isothermal crystallization kinetics of wood-flour/polypropylene composites in the presence of β-nucleating agent[J]. Journal of Forestry Research,2016,27(4):949-958. doi: 10.1007/s11676-016-0209-2
    [8] ZHANG J J, RIZVI G M, PARK C B, et al. Study on cell nucleation behavior of HDPE–wood composites/supercritical CO2 solution based on rheological properties[J]. Journal of Materials Science,2011,46(11):3777-3784. doi: 10.1007/s10853-011-5291-4
    [9] 李浩, 宋永明, 王海刚, 等. 滑石粉对微孔发泡木粉/聚丙烯复合材料结晶行为及泡孔结构的影响[J]. 复合材料学报, 2017, 34(8):1636-1644.

    LI Hao, SONG Yongming, WANG Haigang, et al. Influence of talc on crystallization behavior and cellular structure of microcellular foamed wood flour/PP composites[J]. Acta Materiae Compositae Sinica,2017,34(8):1636-1644(in Chinese).
    [10] ZHAO J C, ZHAO Q L, WANG G L, et al. Injection molded strong polypropylene composite foam reinforced with rubber and talc[J]. Macromolecular Materials and Engineering,2019,305(1):1900630.
    [11] LEUNG S N, WONG A, WANG L C, et al. Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents[J]. The Journal of Supercritical Fluids,2012,63:187-198. doi: 10.1016/j.supflu.2011.12.018
    [12] PAIVA L B D, MORALES A R, FRANCISCO R, et al. Organoclays: Properties, preparation and applications[J]. Applied Clay Science,2008,42(1-2):8-24. doi: 10.1016/j.clay.2008.02.006
    [13] SRIVABUT C, RATANAWILAI T, HIZIROGLU S. Effect of nanoclay, talcum, and calcium carbonate as filler on properties of composites manufactured from recycled polypropylene and rubberwood fiber[J]. Construction and Building Materials,2018,162:450-458. doi: 10.1016/j.conbuildmat.2017.12.048
    [14] RIZVI A, PARK C B, FAVIS B D. Tuning viscoelastic and crystallization properties of polypropylene containing in-situ generated high aspect ratio polyethylene terephthalate fibrils[J]. Polymer,2015,68:83-91. doi: 10.1016/j.polymer.2015.04.081
    [15] LEE Y H, PARK C B, WANG K H, et al. HDPE-clay nanocomposite foams blown with supercritical CO2[J]. Journal of Cellular Plastics,2005,41(5):487-502. doi: 10.1177/0021955X05056964
    [16] LEE Y H, KUBOKI T, PARK C B, et al. The effects of nanoclay on the extrusion foaming of wood fiber/polyethylene nanocomposites[J]. Polymer Engineering & Science,2011,51(5):1014-1022.
    [17] American Society for Testing and Materials International. Standard test methods for density and specific gravity (relative density) of plastics by displacemen: ASTM D792-00[S]. West Conshohocken: ASTM International, 2000.
    [18] 解云川, 范晓东, 孔杰, 等. 聚乙烯/蒙脱土复合材料的结晶行′为[J]. 高分子材料科学与工程, 2005, 21(3):117-120. doi: 10.3321/j.issn:1000-7555.2005.03.029

    XIE Yunchuan, FAN Xiaodong, KONG Jie, et al. Study on the crystallization behaviors of polyethylene/MMT hybrid system[J]. Polymer Materials Science & Engineering,2005,21(3):117-120(in Chinese). doi: 10.3321/j.issn:1000-7555.2005.03.029
    [19] 王丽梅, 贺爱华, 杜凯, 等. 聚丙烯/蒙脱土纳米复合材料的结构及物理性能研究[J]. 高校化学工程学报, 2010, 24(1):132-137. doi: 10.3969/j.issn.1003-9015.2010.01.024

    WANG Limei, HE Aihua, DU Kai, et al. Structure characterization and physical properties of exfoliated polypropylene/montmorillonite nanocomposites synthegized via in situ polymerization[J]. Journal of Chemical Engineering of Chinese Universities,2010,24(1):132-137(in Chinese). doi: 10.3969/j.issn.1003-9015.2010.01.024
    [20] ROSA C D, CORRADINI P. Crystal structure of syndiotactic polypropylene[J]. Journal of Polymer Science Part C Polymer Symposia,1967,16(5):2477-2484. doi: 10.1002/polc.5070160503
    [21] DING W D, JAHANI D, CHANG E, et al. Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors[J]. Composites Part A: Applied Science and Manufacturing,2016,83:130-139. doi: 10.1016/j.compositesa.2015.10.003
    [22] JIANG X L, LIU T, XU Z M, et al. Effects of crystal structure on the foaming of isotactic polypropylene using supercritical carbon dioxide as a foaming agent[J]. The Journal of Supercritical Fluids,2009,48(2):167-175. doi: 10.1016/j.supflu.2008.10.006
    [23] KONISHI T, SAKATSUJI W, FUKAO K, et al. Temperature dependence of lamellar thickness in isothermally crystallized poly(butylene terephthalate)[J]. Macromolecules,2016,49(2016):2272-2280.
    [24] KRIKORIAN V, POCHAN D J. Unusual crystallization behavior of organoclay reinforced poly (l-lactic acid) nanocomposites[J]. Macromolecules,2004,37(17):6480-6491. doi: 10.1021/ma049283w
    [25] FORNES T D, PAUL D R. Crystallization behavior of nylon 6 nanocomposites[J]. Polymer,2003,44(14):3945-3961. doi: 10.1016/S0032-3861(03)00344-6
    [26] ATAEI M, SHAAYEGAN V, WANG C D, et al. Numerical analysis of the effect of the local variation of viscosity on bubble growth and deformation in polymer foaming[J]. Journal of Rheology,2019,63(6):895-903. doi: 10.1122/1.5113802
    [27] 王友勇, 李浩, 宋永明, 等. 木粉对聚乳酸流变、结晶及发泡行为的影响[J]. 高分子材料科学与工程, 2017(8):108-113.

    WANG Youyong, LI Hao, SONG Yongming, et al. Effect of wood flour on the rheology, crystallization and foaming behavior of polylactide[J]. Polymer Materials Science & Engineering,2017(8):108-113(in Chinese).
    [28] WANG C, LEUNG S N, BUSSMANN M, et al. Numerical Investigation of nucleating-agent-enhanced heterogeneous nucleation[J]. Industrial & Engineering Chemistry Research,2010,49(24):12783-12792.
    [29] NISTOR A, TOPIAR M, SOVOVA H, et al. Effect of organic co-blowing agents on the morphology of CO2 blown microcellular polystyrene foams[J]. The Journal of Supercritical Fluids,2017,130:30-39. doi: 10.1016/j.supflu.2017.07.026
    [30] WANG C D, SHAAYEGAN V, ATAEI M, et al. Accurate theoretical modeling of cell growth by comparing with visualized data in high-pressure foam injection molding[J]. European Polymer Journal,2019,119:189-199. doi: 10.1016/j.eurpolymj.2019.07.023
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  972
  • HTML全文浏览量:  407
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 录用日期:  2020-10-27
  • 网络出版日期:  2020-11-11
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回